10. Phase Cycling and Pulsed Field Gradients
10.1 Introduction to Phase Cycling - Quadrature images

The selection of coherence transfer pathways (CTP) by phase cycling or PFGs is the
tool that allows the observation of coherence that has traversed desired pathway.
Once a pulse sequence is devised to generate a desired coherence, it remains to
actively select the desired pathway through manipulation of the phase of the
coherences; this is the realm of phase cycling and PFG.

Coherence selection procedures play an integral role in 2D and ND experiments. The
signals that are desired are usually "contaminated" by signals arising from unwanted
coherences, imperfections in the RF pulses, errors in the phase of the receiver
reference frequency, and other sources of artifacts. The selection of the desired
coherence and the suppression of artifacts arising from instrumental problems is
accomplished by using the dependence of coherence orders on the phase of RF
pulses.

As an introduction to phase cycling, let us consider the removal of some imperfections
caused by instrumental problems, specifically quadrature images. The nuclear spins
generate an oscillating signal in the RF coil that can be described as

M(e™ + e™™) = 2M cos(Qt) (10.1.1)

where M is the magnitude and Q is the radio frequency (RF). The signal is
demodulated by mixing it with the carrier RF, Q,. The process of demodulation
subtracts the RF carrier signal from the received signal, producing the audio
frequencies, which carry the information from the nuclear spins. The NMR detector is
mathematically equivalent to e™*, a circularly polarized RF signal. Detection can be
thought of as the product of the NMR signal with the detector:

M(e' + g% * i (10.1.2)
or
Me@Dt 4 Me @t (10.1.3)

In Equation 10.1.3, (Q+Q.) is the sum of two RF signals which is another RF signal;
this signal is unwanted and is filtered out electronically. The difference term, ( Q-Q.), is
the audio frequency that contains the information of the spin system.

The NMR detector is not ideal and pure circularly polarized radiation is not achievable.
In the real world, the detector is contaminated with some amount of the oppositely
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rotating component, e*. This is the effect from the quadrature reference signals not
having a relative phase shift of 90°. A real detector can be represented by:

e’ + \e'® (10.1.4)
Using this detector, we obtain from the demodulation of the NMR signal:

M(e™ + &™) * (™ + Ae'), (10.1.5)
which can be expanded to:

Me @t + AMe @ 4 Me @Ot 4 \Me @O, (10.1.6)

As before the terms containing Q+Q. are RF frequencies that are eliminated by filters,
but the audio frequency component, Q2-C)., contains two terms at +(Q-Q.). Fourier
transform of these signals will produce two peaks: the correct peak with magnitude M
will appear at -(Q-(.), but another peak with amplitude AM will appear at the symmetric
position about the carrier frequency, (Q-Q.). This false signal is a quadrature image
and is clearly undesirable. A phase cycle known as CYCLOPS is used to suppress
these artifacts. The sequence consists of collecting and combining in a prescribed
manner, the signals from 4 individual experiments. The phases of the excitation pulse
and receiver are incremented by 90" in each experiment.

CYCLOPS
90(0)
))) (receiver 0)
90( . ul2)
))) (receiver 3 n/2)
90( )
|)))) (receiver )
903 w2
))) (receiver n/2) (10.1.7)

The sequences in 10.1.7 are a schematic of the CYCLOPS phase cycle procedure. In
the following sections, we will analyze this procedure in detail, but we first must discuss
an implementation of the product operators that is convenient for the discussion of
phase cycling.

10.2 Raising and Lowering Operators
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In order to understand phase cycling, it is useful to use an alternate description of the
product operators. The raising, I*, and lowering, I, operators are well known in
spectroscopy. Whereas the I, and |, operators involve both up and down transitions
between energy levels, I" and I only allow transitions in one direction. I"is the
transition up and I” is the transition down.

These operators are defined as:

|+

(I, +ily)
(- il,). (10.2.1)

Combining and rearranging Equations 10.2.1, one obtains

| = 1/2(1" + 1)
L, = L@ - )= -ir2(" - T). (10.2.2)

These operators have useful properties for the description of the evolution of a spin
system subjected to phase shifts. For example, consider the effect of a phase shift,
=¢l,=>, on the I" and I~ operators,

I :q)TZ:> ? (1023)

This can easily be calculated by using the known rotations of the Cartesian product
operators

(L+ily) =¢l,=> |, cos¢ + l, sing +il, cos - il, sind. (10.2.4)
This can be simplified to

l, (cos¢ - i*sing) + il, (cos - i*sing) = I, e™ +il, e™ (10.2.5)
or further to

(I, +il) e®=1"¢e™ (10.2.6)
In summary, Equation 10.2.3 becomes

I* =plL=> 1" ™. (10.2.7)
Likewise, the transformation for the I” operator is

- =¢pl,=> I ", (10.2.8)
A phase shift, =¢I,=>, is equivalent to the chemical shift operator, =Q(tl,=>, and
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therefore, the evolution of I" and I- under chemical shift can be described as:

I* =Qil,=> 1" e™
and

- =Qtl,=>I" e,

The useful property of the raising and lowering operators is that they do not mix with a
Z rotation. It is the behavior of these operators under Z rotations (phase shift and
chemical shift) that makes them convenient for describing the behavior of spins in a
phase cycled experiment.

10.3 Phase shifted RF pulses

Phase shifted RF pulses can be thought of as a composite pulse of an X axis pulse
followed by a Z axis "pulse.”

l, =n/2l,=> -, (10.3.1)
This is the same as a 90, followed by a 0°, pulse,
|, =m/2l=> -I, =01,=> -, = ir2(1" - ). (10.3.2)

The equivalent state using the raising and lowering operators is given to show the
effects of the phase shift.

With a /2 phase shift of a I, pulse, we obtain a Ty pulse. This can be simulated as an
X pulse followed by a 90° Z rotation,

I, =m/21,=> I, = |, =m/2l,=> =n/2l,=> 1, = 12(1" + ). (10.3.3)

For a 90° phase shift, the I" component is multiplied by -i and the I component is
multiplied by i.

The 180" (Egn. 10.3.4) and 270" (Egn. 10.3.5) phase shifts can be described similarly:
|, =n/2l,=>1, = |, =n/2l=> =mi,=>|, = -il2(M-T) (10.3.4)

| |, =m/2l,=> =3m/2l=>1, = -12(1F + ). (10.3.5)

z

=n/2l,=> I,

10.4 Elimination of Quadrature Images
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As discussed in Section 10.1, if the signal is detected by a contaminated carrier signal
then we obtain quadrature images. The signal for a X axis pulse given by

AMe @0t 4 Mel@ot (10.4.1)

Based on the phase shift behavior, we equate the NMR signal Eqn. 10.1.1, Me™ with
M I and e with M I'. With a 90° phase shift in the RF pulse, the I component or its
equivalent e @ js multiplied by -i and the I component, €@ is multiplied by i
(Egn. 10.3.3). Multiplication of the appropriate terms in Egn. 10.4.1 with -i and i results
in

-IAMe @Ot + jMme! @ (10.4.2)
With a 180" phase shift in the RF we obtain

-AMe @Ot _ @Ot (10.4.3)
and for a 270" phase shift:

iAMe @Ot _ jme@or (10.4.4)

The signals are acquired separately and combined in computer memory. However, we
can not directly add these results since half are real and the other half are imaginary.
Equations 10.4.1 and 10.4.3 and equations 10.4.2 and 10.4.4 are negatives of one
another and need to be subtracted to retain the desired signal Me'@®', In order to add
the Egns. 10.4.1 and 10.4.3 to equations 10.4.2 and 10.4.4, we need to multiply the
even numbered equations by i to convert them to pure real. This operation is
equivalent to phase shifting the receiver. Recalling Euler's formula of

e™ =cosA=isinA, (10.4.5)
we obtain

el =1, el = j

e" =-1, and e"™ =] (10.4.6)

which correspond to shifting the receiver phase by 0, 3n/2, 11, and /2, multiplication of
equations 10.4.1 and 10.4.3 by 1 and -1, and multiplication of equations 10.4.2 and
10.4.4 by -i and i, respectively, we obtain

)\Me-i(Q-Q)’[ + Mei(Q-Q)’[
_)\Me-I(Q-Q)t + MeI(Q-Q)t
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)\Me—i(Q—Q)t + Mei(Q—Q)t
-AMe @Ot + Me' @O, (10.4.7)

Adding equations 10.4.7, we are left with
4*Me' @O (10.4.8)

The contaminating component, AMe @, is eliminated along with the associated
quadrature image in the spectrum. The desired component Me @ is retained and has
sum of the amplitudes from all experiments.

10.5 Phase shifts by data routing

The actual "phase shifting" of the receiver usually is not accomplished by RF phase
shifts, but by specific data routing in the computer memory. As an example, consider
the signal:

e = cos wt + i*sin wt (10.5.1)

where the cosine and sine functions represent the digitized output of two orthogonal
receiver channels X (real) and Y (imaginary), respectively. A 90" phase shift is
represented as €™ =i. Multiplying the signal 10.5.1 with i yields

i *e“'=i*(cos wt + i*sin wt) = i * cos wt - sin wt. (10.5.2)

The X channel, represented by the cosine function, is now the imaginary part of the
signal and the Y channel, represented by the sine function, is the negative of the real
part of the signal. A 90" phase shift in the receiver is equivalent to swapping the real
and imaginary channels combined with the negation of one of them. For CYCLOPS the
X and Y channels are routed to two separate memory locations in the computer
representing the real and imaginary parts of the complex pair as follows:

¢ A B
0 X Y
90" -Y X
180° -X -Y
270° Y -X

where the negative signs mean that the signal is subtracted from memory. This method
is a perfect 90" phase shift and can not introduce errors that would occur if
implemented in hardware. By taking other linear combinations of the X and Y
channels, arbitrary "receiver" phase shifts can be generated in computer memory.
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10.6 The Rules of Phase Cycling 2

Specific rules are available for the construction of phase cycling regimens. By
following these rules, the phase cycle for the selection of a given coherence transfer
pathway can be constructed for any pulse sequence. In summary, the rules are:

1) Write down all possible changes in coherence, Am, due to the pulse.
2) Mark the desired coherence change and place a bracket next to it.
3) Place a closing bracket after the last undesired coherence change.
4) Count the number of terms N inside the brackets.

5) Calculate the proper phase shifts using Eqn 10.6.1.

¢, = 2mk/N k=0,1,...,N-1 (10.6.1)

6) Repeat steps 1) through 5) for all other pulses in the sequence.
7) The receiver phase, y, is calculated for each phase cycle step i by Egn. 10.6.2.

p=-3Am ¢ (10.6.2)

where Am is the coherence order change at the i pulse and ¢, is the phase of
that pulse.

Several common phase cycles will now be developed using these rules.

10.7 Automatic Baseline Compensation or Systematic noise reduction.

A common problem is data that is biased by a constant signal. This type of signal can
arise from DC offset in amplifiers or other systematic noise. The elimination of this type

of artifact relies on the constant nature of the signal.

Systematic noise reduction
909 w

" J))»

e
' T — (10.7.1)

The diagram in 10.7.1 has the pulse sequence on top and below is the coherence
transfer pathway (CTP).* The double lines in 10.7.1 mark the desired coherence
transfer pathway. Single lines are coherence orders that may occur but are undesired.

The x marks the pathway that is to be blocked. Magnetization at thermal equilibrium
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has coherence order O (level 0). Pulses cause transitions between levels while

chemical shift and coupling evolution do not change the coherence order. By

convention, we detect coherence order -1 as indicated by the box at level -1. With a

perfect detector, only -1 coherence is observed.

Following the procedure of 10.6:

1)

2)

3)

4)

Possible changes in coherence due to the pulse

Am=+1
Am=0
Am=-1.

At thermal equilibrium the coherence order is 0. Only +1 coherence can be

excited from thermal equilibrium.

Mark the desired coherence change and place a bracket next it. Here the

desired change is set in boldface.

+1, 0, -1)

Place a closing bracket after last undesired coherence change, here we

want to suppress 0 order coherence. A change of +1 can be ignored

since with a perfect detector only the -1 coherence is detected.

+1,(0, -1)

Count the number of terms, N, inside the brackets:
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5) Calculate RF phase shifts for this pulse using Eqn. 10.6.1.

&, = 2mk/N k=0,1,...,N-1

For N=2, k has values of 0 and 1.

¢, =2m*0/2=0
¢, =2m*1/2 =m
6) The receiver phase is calculated from Eqn. 10.6.2.
W =-2Am; ¢,
In this case,
Y, = -(-1)*0
W, = -(-1)*n

The complete phase cycling is given by the following table.

Two experiments are collected. The phase of the pulse ¢ is changed from 0 to m with a
corresponding change in the receiver phase of 0 to . The phase shift in the receiver is

accomplished simply by subtracting the signals arising from the two pulses.
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10.8 Elimination of quadrature images and DC offset.

We now return to the elimination of quadrature images and the development of the
CYCLOPS procedure (Section 10.4).

900
J))»
+1 —X——
0 b X
1 (I (10.8.1)

In sequence 10.8.1, a single 90" pulse excites Z magnetization at coherence order O to

orders £1. To eliminate quadrature images +1 coherence must be blocked. Removal

of systematic noise is accomplished by blocking O order coherence.

Following the procedure of 10.6:

1) List the possible coherence changes.

+1,0,-1

2) Mark the desired coherence change and place a bracket next to it.

+1, 0, -1)

3) Place closing bracket after last undesired coherence change.
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(+1,0,-1)

Note: +1 must be eliminated with an imperfect detector.

4) Count the number of terms inside the brackets.

N=10.

5) The RF phase shifts for this pulse are

¢, =2m*0/3=0
¢, = 2n*1/3 = 211/3
b, = 2m*2/3 = 4n1/3.

6) Calculate the receiver phases,
W, =-(-1)*0=0
W, = -(-1)*2n/3 = 211/3
W; = -(-1)*4n/3 = 411/3

The phase cycle for the CTP in sequence 10.8.1 is

¢: 0 2n1/3 4n/3
W: 0 211/3 4n/3.

This 3-step sequence is not the normal 4-step CYCLOPS sequence (Section 10.4),

which is

¢: 0 m1/2 11 311/2
W: 0 /2 11 311/2.
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The main reason that the 4-step phase cycling routine arises is that 90" phase shifts
are much easier to implement in hardware than are sub-90° phase shifts. The
CYCLOPS procedure was invented long before sub-90° phase shifts were commonly

available on spectrometers.
10.9 CYCLOPS

To arrive at the normal CYCLOPS phase cycle, consider a fictitious level at coherence
order +2 that is to be eliminated. This level of coherence cannot be generated from
equilibrium magnetization and therefore, need not be eliminated. However, there is
nothing preventing us from removing nonexistent things. The CTP of 10.7.1 is modified

by the addition of a +2 coherence order level producing the CTP in 10.9.1.

+2 X
+1 —X——o
9 == (10.9.1)

1) List the possible coherence changes
+2,+1, 0, -1.
2) Mark the desired coherence change
+2, +1, 0, -1).
3) Place a closing bracket after last undesired coherence change

(+2, +1, 0, -1).
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4) Count the number of terms inside the brackets

5) The RF phase shifts for this pulse are

¢, =2m*0/4 =0
¢, = 2m*1/4 = n/2
G, =2m*2/4 =mn

¢, = 2m*3/4 = 3n/2.

6) The receiver phases are
W, =-(-1)*0=0
W, = -(-1)*n/2 = 11/2
Wy =-(-1ym=m

W, = -(-1)*3n/2 = 3m/2.

This is the normal CYCLOPS routine that is commonly used in spectrometers to reduce
quadrature images. As discussed in Section 10.5, the receiver phase shifts are

normally implemented through data routing.

10.10 EXORCYCLE

EXORCYCLE is a phase cycling routine designed to remove imperfections in a 180°
rotation of transverse magnetization. A 180° pulse on transverse coherence is

equivalent to interchange of I"to I'. Coherence transfers of 0 and +1 need to be

eliminated.
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+1

1)

2)

3)

4)

180 ¢
t Bt receiver( )

I I (10.10.1)

The desired coherence changes at the 180° pulse are

Am==+2.

Writing all possible changes and labeling as above

(+2 +10-1) -2.

This gives N = 4 terms inside the bracket, leading to phase shifts for ¢ of

o, =0, n/2, i, 3m1/2.

The receiver phase cycle is now calculated,

Y, =-(2)*0=0

W,=-(2)*n/2=m

W, =-R2)*m=2m=0
W,=-(2)*3n/2=3m=T.

The resulting EXORCYCLE phase cycle is
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¢: 0 m/2 11 311/2
p:0mom.

To make the operation of this phase cycle a bit more transparent, let us use the product
operators to show how this sequence works. Transverse magnetization is represented
as:

-l, cos wt + I, sin wt (10.10.2)

If the 180° pulse is misset, i.e., the actual pulse angle <180° by some small angle (3,

here are the calculations for the four different RF phases on transverse magnetization.

=(m-B)l,=> (I, cos (1-B) - I, sin (11-B)) cos wt + I, sin wt (10.10.3)
=(m-B)i,=> -1, cos wit + (I, cos (11-B) - I, sin (1-B)) sin w;t (10.10.4)
=(m-B)1,=> (-, cos (1-B) + I, sin (11-B)) cos wit + I, sin wt (10.10.5)
=(m-B)I,=> -, cos wt + (I, cos (-B) + I, sin (1-B)) sin wt (10.10.6)

In sequences 10.10.3 and 10.10.5, and in sequences 10.10.4 and 10.10.6 the I, terms
are opposite in sign. Adding the acquired data from these pairs of sequences will
eliminate the 1, component. These pairs are then subtracted to retain the desired
transverse operators, I, and I,. The elimination of the |, term is not important if this
sequence is followed by the acquisition period, since Z magnetization is not detected.
If this sequence, however, is an element of a longer pulse sequence, other pulses can
follow the spin echo segment. These pulses will rotate the undesired 1, into the
transverse plane and cause artifacts to appear in the spectrum. This exercise shows

that in any individual step of a phase cycle unwanted terms are retained, and only
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through combinations of phase shifted experiments, consisting of RF phase shifts and
addition or subtraction in computer memory, do the desired terms co-add and the

undesired terms cancel.

Another scenario that can give rise to artifacts arises if ,during the first evolution period
in the spin echo sequence, some Z magnetization is generated from longitudinal
relaxation. An imperfect 180° pulse then generates unwanted transverse coherence
from the Z magnetization. The EXORCYCLE sequence eliminates 1 coherence
transfer; and, as can be shown with product operator analysis, the interfering

transverse component is eliminated.

Phase cycling does not eliminate the undesired coherences in a single acquisition; but
is only effective upon addition of the separate experiments in the computer memory.
However, with respect to the interpretation of the pulse sequence, the EXORCYCLE
phase cycle can be considered to eliminate the |, component at this point in the
sequence. No matter what occurs in the pulse sequence beyond this point, any signals
that arise from the |, terms will remain opposite in sign and be canceled in the computer

memory.

10.11 Inversion of longitudinal magnetization

A major use for inversion of Z magnetization is to decouple (or recouple) the scalar
coupling interaction between two spins (Section ####). If the inversion is not perfect,
transverse magnetization is produced which can interfere with the desired coherences.
The use of longitudinal inversion pulses is also important in the measurement of
relaxation parameters. In the inversion recovery sequence, Sequence 10.11.1,
longitudinal magnetization +Z is ideally inverted to pure -Z magnetization.
Imperfections in the pulse may cause some transverse magnetization to appear.

Phase cycling is used to eliminate this unwanted coherence. The desired change in
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coherence order is 0 in this case since both +Z and -Z are of order 0.

180 ¢, 90 ¢, v

m

Proceeding as before:
o,

Am=0

(+10) -1

N=2

The phases for the inversion 180" pulse are found.

¢, = 2nk/i2 (k=0,1)
q)l = 0,2

The receiver phase for all RF phases is then

W, =-(0)* ¢, =0.

(10.11.1)

If the experiment is repeated too rapidly such that there are transverse coherences that

have not completely relaxed to equilibrium between experiments, then we will have

coherence order changes of #2. If Am = +2 is also to be eliminated then

b,
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(+2 +1 0 -1)
N=4

and the rf pulse phases are

¢, =0, n/2, i, 3n1/2

with all of the receiver phases being

W, =-(0)* ¢, =0.

The 90" read pulse transfers the Z magnetization to the transverse plane for detection
and so the desired coherence order change is -1. This pulse can be phased cycled

with the CYCLOPS sequence to eliminate quadrature images (Section 10.9).

The phase cycles for complicated experiments with many pulses and many different
orders of coherences are easily derived by following the above rules. The procedure in
Section 10.6 will be used to develop phase cycling regimens for the two dimensional

experiments described in this article.

10.12 Pulsed Field Gradients and Coherence Selection

Recently, an old technique has been introduced as a complement to phase cycling.
Pulsed field gradients can be used to select (or deselect) coherence transfer pathways.
Recent advances in the use of pulsed field gradients for multidimensional spectroscopy
have spurred the manufacturers to supply high resolution probes fitted with gradient

coils.

The principle on which this technique is based is the phase sensitivity of different

10-18



coherence orders. A coherence when subjected to a phase shift has a resultant phase

dependent upon the order of coherence. For example,

Coherence order 1:

I*=¢l,=> I"e™ (10.12.1)
Coherence order 2:

I'S* =i+ ¢pS,=> I'S* e2¢ (10.12.2)
Coherence order O:

I'S* =i+ ¢S,=> IS €° (10.12.3)
l, =pl,=> 1, e° (10.12.4)
In general, a coherence with order +p will experience a phase shift according to

151,555 . =0L=> (17,7155 . 1) 7™, (10.12.5)
This sensitivity to phase shift is the property that is used in phase cycling. In phase
cycling, however, the phase of the RF pulses is shifted to effect a phase shift in the
coherence. The phase shift of the desired coherence is then followed by an
appropriate shift in the receiver phase such that the signal arising from the desired
coherence constructively interferes with signals from previous experiments. If a
radiofrequency Z pulse were accessible, then the coherence itself could be phase

shifted. A Z pulse could be accomplished by a transient change in the Larmor

frequency. This could be implemented experimentally by changing the magnetic field
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strength for a specified time. A spin would experience a higher (or lower) magnetic
field strength and would precess at a different frequency. If calibrated properly, an
arbitrary phase shift, governed by Eqn. 10.12.5, could be obtained. A more practical
use of changes in the magnetic field strength is to use a magnetic field gradient. If a
spatially inhomogeneous magnetic field is applied to a sample, then the same spin on
different molecules in different parts of the sample will feel different magnetic field

strengths and precess at different frequencies.

If a 90" pulse is applied to a spin system and then a pulsed magnetic field gradient
(PFG) is applied, transverse coherences in different magnetic fields (different parts of
the sample) are subjected to a phase shift dependent on the strength and duration of
the PFG. After the PFG the transverse spin vectors throughout the sample are
dephased and, since the detected signal comes from all parts of the sample, the
integrated signal is zero. The dephasing, however, can be reversed by several

methods, to be described below.

10.13 Gradient Recalled Echoes

90
RF | receiver( V)

PFG - WM. g (10.13.1)

By reversing the direction of a dephasing gradient, the transverse coherences can be
rephased and the signal recovered in a gradient recalled echo. For a transverse
coherence I" generated by the 90° pulse in Sequence 10.13.1, the first PFG dephases

the coherence:

I* = yG(ntl,=> I e (10.13.2)
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where v is the magnetogyric ratio of the nucleus and G(r) represents the magnitude and
distribution of the gradient field. By applying an opposite and equal PFG the

coherence is recovered:

[* e—ivG(r)t :_VG(r)t’I‘Z:> [* e—iYG(r)t * eiYG(T)t = (10133)

If the time between the application of the PFGs is long enough for something to happen
to the spin such that it does not "see" a field of the same magnitude and opposite
polarity, then the coherence remains dephased and does not contribute to the final
detected signal. For example, if molecular diffusion occurs such that during the time
between the PFGs the molecule moves from its initial position in the sample to a
different position that experiences a significantly different magnetic field during the
second PFG, then the rephasing gradient will not be completely effective in recovering
the signal (Eqn 10.13.4).

= VG(r)t’I‘Z:> I* e-ivG(r)t :_VGn(r)t’I‘Z:> I* e-in(r)t * ei\(G'(r)t = |+eiv[G'(r)—G(r)]t (10134)

The phase introduced by the first PFG is not canceled by the second PFG and thus the
signal is not completely refocused. This effect been used for solvent suppression,

taking advantage of the rapid diffusion of water compared to macromolecules.

10.14 PFGs and the Spin Echo Sequence

Consider the spin echo sequence discussed in Section 10.10. The EXORCYCLE
sequence requires four separate experiments to eliminate artifacts arising from
imperfections in the 180° pulse. Elimination of the same artifacts can be accomplished

in a single experiment by using PFGs.

180 ¢
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t Bt receiver( )

¢
S [
0 Fx—
10— (10.14.1)

In this sequence, I" coherence is transferred to I and vice versa by the 180" pulse. As
described in Section 10.10, an imperfect pulse will transfer some " to 1, which may
cause artifacts in the final spectrum. EXORCYCLE removes the |, component by
shifting the phase of the 180" pulse and thus the phase of the coherence.

The phase cycle can be easily replaced by using pulsed field gradients.

180 ¢
RF t Bt receiver( V)

PEFG -- B___ B_ (10.14.2)

We will follow a I" coherence through Sequence 10.14.2. The first PFG dephases the

coherence as:

" =yG(Ntl,=> " e™CO, (10.14.3)
z

The 180° pulse transforms I" to I,

|+ e-ivG(r)t :HTX:> I‘ e-iYG(f)t (10144)

and finally the second PFG, which is identical to the first PFG, rephases the I

coherence.

10-22



|- ™o =yG(Ntl,=> I Ve * gVt = |- (10.14.5)

The inverse sensitivity of the I" and I coherences to the gradient induced phase shift
causes the signal to refocus in the two identical PFGs. Any imperfection in the 180°
pulse will produce I, magnetization from gradient-dephased transverse magnetization
present before the RF pulse (Sequence 10.14.3). The undesired |, magnetization is

labeled with the dephased transverse magnetization that occurred during the PFG.
I et =pl=> 1|, e gin (B) (10.14.6)

If there is another RF pulse later in the experiment, the transverse magnetization
created from the Z magnetization of Eqn. 10.14.6 will retain the dephased information

and, in the absence of a rephasing gradient, will not contribute to the final signal.
Iz e-ivG(r)t :TI/ZTX:> _|y e—ivG(r)t (10.14.7)

For Z magnetization that is present before the imperfect 180" pulse, any generated
transverse magnetization will be dephased by the second PFG.

Pulsed field gradients also can be used to remove the phase cycling necessary
to select a given coherence. They can also be used to select either the +I or -I
coherence for magnitude-mode quadrature detection. PFGs promise to be an

extremely useful tool in NMR spectroscopy.
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