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13.  Theoretical Description of Coupling - Product Operators

For an ensemble of noninteracting spins in a magnetic field, the classical description of
the magnetization as a vector gives results identical to the quantum mechanical
description given by the density matrix treatment.  It is only in the the presence of
scalar coupling or other strictly quantum mechanical interactions (dipolar, quadrupolar,
etc.) that the evolution of a spin system can not be described by classical mechanics. 
However, since most of the interesting and useful cases in modern NMR spectroscopy
involve quantum mechanical interactions, the vector model must be abandoned or
modified.

An intermediate approach to the description of NMR experiments involving scalar
coupling is to use a classical vector model supplemented with results from quantum
mechanics (See Benn and Gunther (1983) and Turner(1984)).  This approach, while
lending some insight to the mechanics of some simple pulse sequences, can lead to
misunderstandings and wrong conclusions about the behaviour of the spin system. 
This approach completely fails to describe multiple quantum coherences.  The density
matrix treatment is the most complete description of the spin system that is possible.
However, this treatment is not very transparent (or understandable to the uninitiated)
and does not easily lead to an intuitive feel for the behavior of spins in NMR
experiments.  The product operator formalism is a short hand form of the density matrix
description that keeps the correctness of the density matrix treatment, but at the same
time, allows the experimentalist to retain a semblance of intuition.

13.1 Coupled Spin Systems

A coupled spin system, IS, such as in a 13C-1H moeity, from the viewpoint of the 13C
nucleus the sample can be described as a mixture of two different compounds, one with
the attached 1H spin "up" and an almost equimolar amount of molecules with the
attached 1H spin "down".  This description is the one that is used to show the patterns
of lines in a coupled spin system.  

For 13C - 1H the species present are

13C 1H8  and 13C 1H9. (13.1.1)

Since there are (almost) equal numbers of 8 and 9 H spins, there are two 13C spectral
lines of equal intensity.  The frequency difference between the peaks is due to the local
magnetic field of the coupled 1H spin, the 8 spin increases the magnetic field felt at the
13C nucleus and vice versa.
The spectrum looks (schematically) like:

/ /
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For a C-H2 moiety, We have one state with parallel 1H spins up

13C - 88, (13.1.2)

two states with the 1H spins aligned oppositely

13C - 89 98,

and (13.1.3)

one state with parallel 1H spins down.

13C - 99. (13.1.4)

This gives a spectrum with three lines (assuming the same couplng constant for
both 1H spins) in an intensity ratio of 1:2:1.

// / /
Similarly, for a methyl group CH3 the possible states are

13C - 888
13C - 889 898 988
13C - 998 989 899
13C - 999
giving a spectrum containing 4 lines in a 1:3:3:1 intensity ratio.

/ // // / / /
13.2 Semiclassical Picture of Coupling

Before embarking on the product operator description of coupling, it is useful to obtain
an intuitive picture of coupling through a semi-classical approach.  This approach was
described by Lynden-Bell et al.  Assume a heteronuclear spin system I-S with a non-
zero scalar coupling between the two spins, JIS <> 0, e.g. the coupled 1H13C in HC-Cl3. 
A 90E pulse (along the -X axis in this case) applied to the Sz magnetization, generates
transverse coherence Sy.

Sz =-B/2ÖÖx=> Sy (13.2.1)
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Figure 13.2.1 Evolution of semi-classical, coupled vectors. 

The state vector Sy is composed of vectors from two very nearly equal populations of
molecules: those coupled to I spins in the " state and those coupled to I spins in the $
state (Figure 13.2.1A).  The local magnetic fields experienced by the S  spins in these
two populations are slightly different because of the different fields of up and down I
spins.  Therefore, the two types of S spins precess at slightly different frequencies.  In
a proton-coupled 13C spectrum of chloroform, there are two resonance lines with the

frequency difference being the the coupling constant.  If the S spin is on resonance, i.e.
the decoupled S frequency is zero in the rotating frame, then the two Sy vectors, which
are attached to spin up and spin down I spins, will precess apart at the coupling
frequency.  At time 1/(2*J), the two spin vectors will have precessed into opposite
positions along the X coordinate axis (Figure 13.2.1B).  As the spins continue to
precess, the two vectors become parallel again along the -Y axis at a total time of 1/J
(Figure 13.2.1C).  At a time of 3/2J, the vectors will again be in opposite directions
along the X axis.  Note in (Figure 13.2.1D) that the " and $ spins are negative with
respect to the positions in (Figure 13.2.1B).  Finally, at a time 2/J the spin vectors
return to the -Y axis as in (Figure 13.2.1A).  

The observed time domain signal is the sum of the two vectors that are precessing in
the XY plane.  When the vectors are aligned, a maximum signal will be observed. 
When the vectors are pointing in opposite directions, a zero signal will be observed. 
The observed signal due to the coulping is a cosine function, starting at a maximum,
going through zero and a negative maximum, then returning through zero to the
positive maximum.   In this semi-classical picture, the observed magnetization vector
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changes magnitude.  It is not clear in this description "where the magnetization goes"
when the observed signal is equal to zero.

13.3 Quantum Description - Antiphase Coherence

In analogy to the evolution of a spin vector evolving under chemical shift, we have

Sy  =TStÖÖz=> Sy cos TSt - Sx sin TSt. (13.3.1)

We should be able to construct a similar relationship for evolution under coupling, e.g.

Sy =JIS==> Sy cos BJISt - Q sin BJISt (13.3.2)

Equation 13.3.2 represents the evolution of the coherence as the precession of a single
vector, which does not change in magnitude, about an axis "J" in a plane with
coordinate axes Sy and Q.  What is the axis Q and what is the axis J?  A schematic of
this concept is shown in Figure 13.3.1.

Again referring to a semi-classical picture of a coupled spin system, the two counter
rotating components will evolve due to coupling from the Y axis to opposite directions
along the X axis (Equation 13.3.3).

" Sy + $ Sy ==(1/(2*J))==> -" Sx  + $ Sx (13.3.3)

The "amounts" of each of the components are given by the "concentration" of the
attached up and down I spin, " and $.   The expression in Equation 13.3.3 can be
rearranged to

       -" Sx  + $ Sx  = ("-$)* -Sx. (13.3.4)

The quantity ("-$) in Equation 13.3.4 is the population difference across the I energy
levels and, therefore, is equivalent to the longitudinal magnetization of the coupled spin
Iz.  More precisely, "-$ is proportional to the expectation value Iz.  By substituting Iz for
("-$) one obtains

("-$)* -Sx = IzSx.  (13.3.4)
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Figure 13.3.1.  Representation of a single vector representing evolution under scalar
coupling.  The rotation occurs about axis J coming out of the plane and the axis labeled
Q is analogous to the semiclassical state where there opposite vectors cancel.

and the evolution in Equation 13.3.3 can be rewritten as

Sy  ==(1/(2*J))==> -2IzSx  (13.3.5)

(NOTE: A normalizing factor of 2 has been introduced)

The -2IzSx state in Equation 13.3.5 is known as -Sx magnetization that is antiphase with
respect to I.  This state is not directly observable under any experimental conditions,
which is consistent with a picture involving the sum of oppositely pointed vectors.  A
more general term, coherence, is normally used in place of magnetization for the
description of non-observable terms.  The term coherence also can be accurately used
to describe observable magnetization.  
As described in Section 13.2, After arriving at the antiphase state in Equation 13.3.5,
the two S vectors will again align along the -Sy axis, and later form the positive
antiphase state 2IzSx, before completing a full cycle back to Sy.  The time dependence
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Figure 13.4.1.  Schematic representation of two "separate universes" and their
coordinate systems.  The wall between the two spaces signifies that there is no
interaction between the systems.

can be written,

Sy  =BJISt2ÎzÖÖz=>  Sy  cos( BJISt ) - 2IzSx sin( BJISt ) (13.3.6)

Transverse magnetization oscillates between inphase ( Sy ) and antiphase coherence (
2IzSx ).  Note that the J axis is replaced with the rotation operator  2IzSz for the coupling
interaction.  This operator arises from the form of the coupling interaction, JICS, in the

Hamiltonian.  The dot product of I and S is IzSz + IxSx + IySy.  In the weak coupling
regime, where the difference in chemical shift between the two coupled spins is much
greater than the coupling constant, the terms IxSx  and IySy are oscillatory and in time



13-7

Figure 13.4.2. Schematic representation of the universe of two coupled spins.  The
hole in the wall between the two spaces allows one spin to "see" what the other is
"doing".

average to zero.  This leaves only the IzSz as the weak coupling term.  This is not the
case for strong coupling where the transverse terms are retained; the strong coupling
interaction does not fundamentally alter the description of coupled spin systems,
adding only unnecessary complications.  We will assume the weak coupling condition
in all cases except where noted. 

13.4 Two-Spin Space

Without introduction of scalar coupling or other interactions, a space of three
dimensions is sufficient to describe the behavior of nuclear spins.  Even if two different
types of non-interacting spins are under study, each spin inhabits its own universe
(space) described by a unique three dimensional coordinate system (See Figure
13.4.1).  It seems natural to think of each separate spin space as a whole, ignoring the
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other one.  We can represent the state of the two spaces by the by two, three-
dimensional vectors or by a single six-dimensional vector (Ix, Iy, Iz, Sx, Sy, Sz).  Although
it seems natural to think of these as separate spaces, it is just as easy to think of it as a
single six-dimensional space.  The components of the vectors are obtained by
projecting them onto the six, mutually-orthogonal, axes of this space.  Perhaps it is not
easy to grasp more than 3 dimensions in the minds-eye, but one can always envision
three-dimensional sub-spaces of the higher dimensional space, i.e. since the axes are
all orthogonal, any convenient set of three axis can be used to form a three-
dimensional subspace.
 
The introduction of coupling into a two spin system is analogous to poking a hole in the
wall that separates the two universes (Figure 1.4.2) thus allowing the spins to feel the
motion of the other spin. To generate a space that contains two interacting spins, I and
S, the x, y, and z operators for each spin must be represented, but also the interaction
(i.e. coupling) of the spins must be represented.  However, it appears that we don't
have any axes to spare, since all of the axes are "in use" describing the x, y, and z
components of the two individual spins.  To extend the classical vector analogy to
include the coupling interaction, there must exist another axis orthogonal from the two
sets of three-dimensional cartesian coordinates.  

13.5 Two Spin Product Operators

The terms that involve two operators (e.g. 2IzSx ) are similar to Sx, Sy, and Sz but
describe coordinate axes that are in a space with more than three dimensions.  In order
to describe a spin system the "space" of the description must be large enough to hold
all of the information necessary to completely define the system.  For a single non-
interacting spin the space consists of "operators" that correspond to the three spatial
coordinate axes and an identy operator to complete the mathematical "group".  A spin I
would have operators "Ix, Iy, Iz, and IE".  The three operators Ix, Iy, and Iz  are just the
cartesian coordinates for the classical magnetization vector for spin I.  The IE operator
can be thought of as the bulk of magnetic spins that have equal populations in the
quantum mechanical energy levels and thus do not give rise to any net magnetization. 
The IE operator could also be used to described a saturated spin system, i.e. a system
that has equal populations in both energy levels and no net magnetization.

The coordinates (axes) that are required to describe a coupled two spin system are
generated by the "tensor products" of the I and S spin operators.  In the product
operator formalism the tensor products are obtained by taking all possible of the
combinations of the I and S operators (IE, Ix, Iy, Iz, Se, Sx, Sy, Sz ).

Identity

Ie * Se  = E          
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Single Quantum (Magnetic quantum number = ±1) 

Ix  * Se = Ix    SQ      Ie * Sy  = Sy     SQ
Iy  * Se = Iy    SQ Ie * Sx  = Sx     SQ     

Anti-Phase Single Quantum (Magnetic quantum number = ±1)

Iz  * Sy  = 2IzSy   
Iy  * Sz  = 2IySz   
Ix  * Sz  = 2IxSz   
Iz  * Sx  = 2IzSx 

Longitudinal Magnetization (Magnetic quantum number = 0)

Iz  * Se = Iz    LM Ie * Sz  = Sz     LM

Longitudinal two spin order (Magnetic quantum number = 0)

Iz  * Sz  = 2IzSz 

Two spin Multiple quantum (Magnetic quantum number = 0,±2)

Ix  * Sy  = 2IxSy 
Iy  * Sy  = 2IySy      
Ix  * Sx  = 2IxSx 
Iy  * Sx  = 2IySx                 

NOTE:  The 2 multiplier is a normalization constant.  The constant is equal to 
2(the number of operators - 1) in the product operator.

The only physically observable operators are Ix, Iy, Sx, and Sy corresponding to
transverse magnetization that induces current in the receiver coil ( Iz and Sz are also
physically observable but are not measured directly by normal NMR techniques).  The
anti-phase single quantum terms are formally not observable, but can evolve through
scalar coupling into observable terms during a "free precession" period in a pulse
sequence and many times are the important terms in an experiment.

These "product operators" can be used to completely describe evolution of a weakly
coupled two spin system during an arbitrary pulse sequence.  The 16 product operators
that are generated by this procedure can be viewed as the E operator and the 15
coordinate axes that are necessary to describe an arbitrary state of the two interacting
spins.  Having more than three dimensions may seem difficult to comprehend, but it is
no more difficult than having a series of experiments with coordinates (pH, temperature,
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ionic strength, concentration, E. coli mutant) that span a 5 dimensional vector space. 
The extension of the product operator formalism to larger spin systems is straight
forward.

The behaviour of the I*S product operators with respect to pulses and chemical shifts
are as if the I and S spins are independent.  A rotation of one spin does not effect the
other spin even in a state with more than one operator.

Pulses:
Non-selective pulse, where both spins are pulsed. Here the spins are rotated
with different phases

2IxSz  =B/2Îx + B/2ÖÖy=> 2IxSx

Spin selective pulse, where only one spin is pulsed.

2IxSz  =B/2Îy=> -2IzSz 

Pulses operating on one spin do not affect the other spin(s).

2IzSx  =B/4Îy + B/6ÖÖy=> 2[ Iz cos B/4 + Ix sin B/4]
* [ Sx cos B/6 - Sz sin B/6]

                 
Chemical shifts:

-Iy  =TItÎz=> -Iy cos TIt + Ix sin TIt 

2IxSz  =TItÎz + TStÖÖz=> 2[ Ix cos TIt  + Iy sin TIt] Sz 
/  2IxSz cos TIt  + 2IySz sin TIt

       2IzSz  =TItÎz + TStÖÖz=> 2IzSz 

       2IxSy  =TItÎz + TStÖÖz=> 2[ Ix  cos TIt + Iy sin TIt ]
                   * [ Sy cos TSt - Sx  sin TSt ] 

/   2IxSy cos TIt cos TSt 
- 2IxSx cos TIt sin TSt 
+ 2IySy sin TIt cos TSt 
- 2IySx sin TIt sin TSt       

Scalar coupling:

Ix  =BJISt2ÎzÖÖz=> Ix cos BJISt + 2IySz sin BJISt
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Iz     =BJISt2ÎzÖÖz=>  Iz 

2IzSx   =BJISt2ÎzÖÖz=> 2IzSx cos( BJISt ) + Sy sin( BJISt )

2IxSy   =BJISt2ÎzÖÖz=>  2IxSy  (no rotation if no passive coupling                                 
    partner)

       In a IST spin system with IT coupling:
      2IxSy   =BJISt2ÎzTz=> 2IxSy cos( BJITt ) + 2IySyTz sin( BJITt )

The following are the most common three dimensional subspaces for a coupled two
spin system.  The are collected as rotations about a given axis, i. e. the first figure
shows rotations about the X axis for the I spin.  Only the I spin rotations are shown, the
S rotations can be obtained by exchanging S for I in all cases except for coupling
where the diagram remains the same. 
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