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Frequency Hertz(cycles/second)
2B<

radian/sec
T

Angle
(Frequency*
time)

Hz*t = 2B<*t

(Rad/s)*t = T*t

positive rotation about Y:
Z 6 X 6 -Z 6 -X 6 Z

positive rotation about X:
Z 6 -Y 6 -Z 6 Y 6 Z

positive rotation about Z:
X 6 Y 6 -X 6 -Y 6 X

3.1 Rotational frequencies and angles

Rotations about an axis take a finite amount of time.  The time for a vector to rotate
360E (2B radian) is the "period" with units of seconds/cycle (1/Hertz).  The reciprocal of
the period is the "frequency" and has
units of cycles/second or Hertz.  No
matter what physical property causes a
rotation of the magnetization vector
(radiofrequency pulse, chemical shift,
coupling) there is an associated
frequency.  The angle subtended by a
vector with an angular velocity of T
(2B<) in a period of time t is T*t (2B<*t).

In NMR spectroscopy the signal that is
detected is proportional to the projection
of the magnetization vector onto the XY
plane (a*Ix, b*Iy).  If the magnetization is
aligned along the +Z or -Z axis then there is a zero projection in the XY plane and there
is no detectable signal.  If the magnetization lies perpendicular to the Z axis (i.e. in the
XY plane) then the signal strength is at a maximum.  The XY projection of a
magnetization vector that has an angle of N away from the Z axis can be easily
calculated using trigonometry. 

One important point worth mentioning here is that the only directly observable quantities
of any spin system are the components of the magnetization vector that lie in the XY
plane (Ix or Iy).  This becomes very important to remember in the coupled spin systems
that we will encounter later.  Magnetization along the Z axis can be directly observed
with special experiments and hardware that will not be discussed.

3.2 Right-handed Cartesian coordinates

The X,Y,Z coordinates of can be
arranged in two orientations, right- and
left-handed.  In order to retain
consistency, all of the coordinate axes
and rotations we use here will be right-
handed.  A right-handed coordinate
system is such that if one curls the
fingers of the right hand, the fingers will
travel from the X axis to the Y axis and
the thumb will point along the Z axis. 
Mathematically, the cross product (¼) of
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Figure 3.1. Rotations of I by 90E, 180E, and
360E around the X axis.

the unit vectors X ¼ Y results in a vector aligned along the positive Z axis.  In this
system, a positive rotation of a Z vector about the Y axis will carry the vector towards
the positive X axis.  

Note that this convention is not universal.   Many NMR texts rotate the vector in the
opposite direction ( e.g. van de Ven,1995). The convention used here is that used by
Ernst et al in Principles of Nuclear Magnetic Resonance in One and Two Dimensions.
The general convention is that for a RF magnetic field applied along the negative X (or
Y) axis the rotation vector for a nucleus with a positive gyromagnetic ratio lies along the
Positive X (or Y) axis.  For rotations around the Z axis, it is assumed that for a positive
rotation (X 6 Y 6 -X 6 -Y) the carrier frequency is placed above the resonance
frequency, that is, TRF > T0. 

In all rotations of the state vector, only components that are orthogonal (at right angles
to) the axis of rotation are effected.  In a simplified treatment of NMR spectroscopy that
neglects the effects of being "off-resonance" (we will consider this later) the rotation
axes for all interactions lie either along the Z (longitudinal) axis or somewhere in the X,
Y (transverse) plane.  Rotations about the Z axis are due to chemical shifts or phase
shifts.  Rotations about axes in the XY plane are RF pulses. 
    
If a Z vector representing the I
magnetization, (0*Ix, 0*Iy, 1*Iz) or (Iz),
is rotated about the X axis by 90E (B/2
radian), the vector will then lie along
the -Y axis (Iy) (Figure 3.1).  If the
rotation angle is increased to 180E (B
radian), then I it will rotate to the -Z
axis (-Iz). Obviously, a 2B rotation will
return the vector to the Z axis (Iz). 
The direction of rotation is given by a
cross product of X q Z,  that is, Y = X
q Z.  The result of a 90E pulse along
the X axis will rotate a vector initially
along the Z axis towards the Y axis.   
   A rotation by B/2 about the X axis of
a vector initially along the Z axis will
be designated as:

Iz  =B/2Îx=> -Iy 

  This represents Iz magnetization being tipped by 90E (B/2 radian) around the X axis to
-Iy (this is a positive rotation).  A smaller rotation of say 45E about the X axis would
leave the vector somewhere in the YZ plane between the Z axis and the -Y axis.  To put
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B/4Î x cos B/4

sin B/4

Figure 3.2. Components of a vector initially
along the Z axis rotated about the X axis by
the angle B/4 (45E). The  (-)Y component is
sin B/4 and the Z component is cos B/4.

this on a more quantitative basis we can
resort to trigonometry.  Figure 3.2 shows
the trigonometric relationships of the
components of a vector that is tilted away
from the Z axis toward the Y axis by 45E
(B/4).  The Z component is equal to
cos(45E) and the Y component, -Iy, is
equal to sin(45E). 

In the notation that we will be using to
describe rotations such as this, a 45E
(B/4) rotation about the X axis of a vector
initially along the Z axis, Iz, will be
represented as:

Iz  =B/4Îx=> Iz cos B/4 - Iy sin B/4
 
Note that the rotation is positive, that is, the Z component rotates toward the Y axis with
a positive rotation about the X axis. For the general rotation, 2:

Iz  =2Îx=> Iz cos 2 - Iy sin 2

Note that when 2 is greater than B (180E), sin 2 < 0.  If 2 is 270E (3B/2), sin 3B/2 = -1
and the final position for the vector is along the positive Y axis.
  
Iz  =3B/2Îx=> Iz cos 3B/2 - Iy sin 3B/2

/  Iz * 0 - Iy * -1

/  Iy 

The same result would be obtained by rotating the vector in a negative direction about
the same axis:

Iz  =-B/2Îx=> Iy 

Vector rotations in 3 dimensions can be determined by following simple rules.
1) Rotate each component of the vector independently.
2) Obtain the result by multiplying the initial vector by cos(arg)

and adding sin(arg) times the vector obtained by the cross
product of the rotation axis into the initial vector, which is
obtained from the right hand rule of turning the rotation axis
into the initial vector axis with the thumb pointing toward the
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Figure 3.3. Vector representation of a sequence of rotations.
           ( =2Îx=>  =$Îy=>  =TItÎz=> )

final axis.  

The argument of the sine and cosine functions is the angle of rotation.  As an example,
use the following sequence:

Iz  =2Îx=> ?  =$Îy=> ?  =TItÎz=> ?

This sequence would be diagrammed as:

     
 

Figure 3.3 represents the motion of a 3 dimensional vector initially along the Z axis ( Iz )
subjected to this series of rotations.  

Starting with the vector Iz, rotate it around the X axis by an angle 2.  
Using the right hand rule, moving the rotation axis, X, into the initial axis, Z, points the
thumb toward the negative Y axis.  The rotation angle is 2, so Iz, the initial vector, is
multiplied by cos(2) and the final axis, -Iy, is multiplied by sin(2). 
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Iz  =2Îx=> Iz cos 2 - Iy sin 2

Continuing with the next rotation of $ about Iy:

Iz cos 2 - Iy sin 2  =$Îy=> (Iz cos $ + Ix sin $) cos 2 - Iy sin 2

/  Iz cos $ cos 2 + Ix sin $ cos 2 - Iy sin 2

Each of the components, Iz and Iy, are treated independently.  The rotation about the Y
axis carries the Iz  component towards the Ix  axis with the appropriate cosine and sine
multipliers.  The Iy component is not effected by a rotation about the parallel Y axis
(Figure 3.4).  Notice that the components retain the multipliers that were gained during
the first rotation.
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2Îx

Figure 3.4 Vectors that are collinear with the rotation axis are invariant to the rotation.
(Ix  =2Îx=> Ix) 

The final rotation is calculated as:

Iz cos $ cos 2 Iz cos $ cos 2 
+ Ix sin $ cos 2 =TItÎz=> + (Ix cos TIt + Iy  sin TIt) sin $ cos 2
- Iy sin 2  - (Iy cos TIt - Ix sin TIt) sin 2

/  Iz cos $ cos 2
+ Ix (cos TIt sin $ cos 2 + sin TIt sin 2)
+ Iy (sin TIt sin $ cos 2 - cos TIt sin 2)
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Figure 3.5. Histogram for the sequence:
Iz = 35EE Îx=> =45EE Îx=> =55EE Îz=>. 

B/2Î

TtÎ  = B/2Î

B/2Î x

z z

y

Figure 3.6. Vector diagram for the pulse
sequence:
 Iz  =B/2Îx=>  =B/2Îz=>  =B/2Îy=> 

In calculating these
rotations, it becomes
obvious that it one can
quickly become mired in a
huge pile of trig functions
and spin operators which
degrades the simplicity of
this formalism.  The use of a
computer can eliminate the
difficulty at the expense of
loss of understanding.  The
best approach is to
introduce simplifications
that do not compromise
accuracy, but retain the
overall understanding of a
sequence of rotations. 
However, at times it is
necessary to "bite the
bullet" and just do the entire
calculation.   

Computers can certainly
simplify the calculation of complicated sequences, but this approach tends to hide the
understanding in a black-box.  Figure 3.5 is a histogram created from a computer
simulation of the motion of the state vector during the pulse sequence:

Iz  =2Îx=> ?  =$Îy=> ?  =TItÎz=> ?

With the angles: 2 = 35E, $ = 45E, and 
TIt = 55E.  The numbered steps in the
histogram refer to positions in the pulse
sequence.

As an example of how proper choices of
rotation variables can simplify the
calculations consider the sequence:
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I

The vector motion is shown in Figure 3.6 and the corresponding histogram is shown in
Figure 3.7.

The sequence is calculated as above but with the substitutions of particular rotation
angles.

Iz  =B/2Îx=> -Iy  =B/2Îz=> Ix  =B/2Îy=> -Iz 

Compare this to the general calculation:

Iz =2Îx=> Iz cos 2 - Iy sin 2

=TItÎz=> Iz cos 2 - (Iy cos TIt - Ix sin TIt) sin 2

=$Îy=> (Iz cos $ + Ix sin $) cos 2 - Iy cos TIt sin 2
+ (Ix cos $ - Iz sin $) sin TIt sin 2

/ + Iz (cos $ cos 2 - sin $ sin TIt sin 2)
- Iy cos TIt sin 2
+ Ix (sin $ cos 2 + cos $ sin TIt sin 2)

Upon substituting cos B/2=0 and sin B/2=1,

    /  Iz * (-1) = -Iz
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90Ix - B/2Iz - 90Iy

Figure 3.7 Histogram for sequence: =B/2Îx=>  =TItÎz=>  =B/2Îy=> 

is obtained.  This is just to point out that when there are substitutions that make life
simpler, you should take advantage of them.


