
 

 

 

The Vector Paradigm in Modern NMR Spectroscopy:  

I. Pulse Sequences Applied to Isolated Spin Systems. 

William M. Westler 

 

 

 

 

 

 

Keywords: NMR, pulse sequence, product operator, vector, spin echo, pulsed field gradient 

 

 

National Magnetic Resonance Facility at Madison 

Department of Biochemistry 

433 Babcock Drive 

University of Wisconsin-Madison, Madison WI 53706 

Telephone: 608-263-9599 

Fax: 608-263-1722 

E-Mail: milo@nmrfam.wisc.edu 

Copyright © 2005 W.M.Westler 



NMR spectroscopy was revolutionized in the mid 1970's with the introduction of two-

dimensional methods by Richard Ernst(###) for which, among other contributions, he won the 

1991 Nobel prize in Chemistry. Since that time there has been an explosion of powerful methods 

that has made NMR an important player in many scientific fields. The majority of these methods 

were developed for the use in the determination of structures of biomolecules. Yet another Nobel 

prize in 2002 was awarded to Kurt Wuthrich(##) for his contributions in this area. With the 

sequence of the human genome, among others, in hand, and the current structural genomics 

efforts around the world, large numbers of proteins and other biomacromolecules with unknown 

structures and function are now under investigation. NMR is playing a major role in answering 

the questions arising in the burgeoning field of proteomics. 

 

The techniques of modern NMR spectroscopy are based on a large number of pulse sequences. 

Many of these experiments are extremely useful not only for the biomolecular NMR 

spectroscopist but also for the working chemist. NMR spectroscopy, as it is taught in 

undergraduate organic or analytical chemistry courses, is a good introduction, but the real power 

of NMR comes only with more sophisticated techniques. The descriptions of the advanced 

techniques are often couched in terms of density matrix theory or the equivalent product operator 

formalism. The product operator formalism, which was introduced in the early 1980s(##), is the 

most widely used technique for describing NMR pulse sequences. Once the concepts of the 

product operators are grasped, one can read a pulse sequence in a manner similar to that used to 

understand electronic schematics. 

 



Prior to the introduction of the product operator formalism, for a complete description of the 

motion of nuclear spins subjected to magnetic fields one had to rely on the mathematics of the 

density matrix approach(##). While the density matrix is powerful and provides a complete 

description of the motion of nuclear spins, it is not readily visualized. Simple vector models of 

spin physics, which are easily visualized, are sufficient to accurately describe the motions of 

isolated spins, but fail to produce the correct results in scalar coupled spin systems. The product 

operator formalism simplifies the description of NMR experiments while retaining the 

mathematical rigor of density matrix theory.  

 

The motion of isolated spins can be visualized by the simple vector model with no loss of rigor 

and can easily be mapped to the product operator approach. In and the following papers, the 

vector model in the framework of the product operator formalism will be used to describe the 

motion of isolated and coupled spin systems subjected to various pulse sequences. The 

description of the motion of isolated spin systems in this paper will serve as a jumping-off point 

for the extension of the vector model for visualization of the product operator treatment of 

coupled spin systems. With a working knowledge of the product operators for the description of 

isolated and coupled spin systems, one can tackle the complicated pulse sequences found in the 

literature with little more than pencil and paper. In fact, most pulse sequences can be understood, 

at least qualitatively, with mental gymnastics.   

  

The Vector Paradigm 

Vectors have been used from the early days of NMR to describe the motion of nuclear spins 



subjected to a series of radiofrequency (RF) pulses and time delays. The behavior of the rotation 

of a three-dimensional vector completely describes (in high magnetic fields) the motion of 

nuclear spins subjected to both static and oscillating magnetic fields. Although the simple three-

dimensional vector model fails to predict the behavior of spin systems in which there are 

interactions between spins, such as scalar coupling, the simplicity of the vector for describing the 

motion of nuclear spins is still extremely valuable. Even in the cases where the three-

dimensional vector model breaks down, a clear understanding of vector rotations allows one to 

visualize the motion of vectors that represent coupled spin systems of higher dimensionality (e.g. 

16 or greater dimensions in a spin system with two coupled spins).  In order to understand 

complicated multipulse NMR experiments in coupled spin systems, intimate familiarity with the 

nature of the rotations of three-dimensional vectors is imperative. 

 

At thermal equilibrium, individual nuclear 

magnetic moments precess about the Z axis of 

the external magnetic field at the Larmor 

frequency, T=γB0, where the magnetogyric ratio 

γ is a characteristic property of every nucleus 

and B0 is the strength of the magnetic field.  For 

nuclei with a nuclear spin of ½, which are the 

only spins to be considered in this paper, two 

energy states are available, α and β.  A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Individual nuclear magnetic 
moments precess in an external field giving 
rise to a net magnetic moment along the Z 
axis. 



Boltzmann equilibrium of the states is established when the nucleus is put into an external 

magnetic field. Since there is a slight population excess of spins in the lower energy level, there 

is a net group of spins that give rise to a bulk magnetic moment.  The vectors that represent 

individual nuclear magnetic moments precess in a cone around the Z axis (Figure 1).  The bulk 

magnetization of the sample is the vector sum of all of the individual precessing nuclear 

magnets.  The summed vector has a non-vanishing component only along the Z axis.  The 

projection of the vectors in the XY plane is zero, since all possible orientations (phases) of the 

vectors around the Z axis are allowed and destructive interference among the individual spin 

vectors occurs.  The vectors are said to precess incoherently since the phase relationships 

between the individual spin vectors is arbitrary.  As long as the nuclear spin system consists of 

identical and non-interacting nuclei, the exact behavior (motion) of the spin system can be 

described by transformations of the three-dimensional vector that represents the bulk 

magnetization, even in the presence of relaxation processes. (Appendix I-Bloch to rotation 

matrix). If relaxation is ignored, the transformations become simple 3D rotation matrices. In the 

following treatment relaxation will not be considered. 

  

NMR and Rotations 

Every interaction in NMR spectroscopy, e.g. chemical shift, scalar coupling, and RF pulses, can 

be formally represented as a rotation or sequence of rotations of a vector.  All orthogonal 

rotations of any vector involve a maximum of three coordinates: the axis about which the vector 

is rotated and the two axes that are orthogonal (90E) to the rotation axis.  However, in NMR the 

dimension of the state vector which describes the spin system can be quite large.  As will be 



presented in the next paper of this series, a 16 dimensional vector is needed to describe the 

motion of two coupled spins and a 64 dimensional vector is required for a three coupled spins.  

However, all rotations of these vectors occur in three dimensional subspaces that involve only 

one rotation axis and two orthogonal axes.  Many of these subspaces have no physical analog, 

but since they are three-dimensional rotations, a picture of the rotations can be constructed by 

using a three-dimensional framework with the appropriate labels for the axes.  This all may seem 

very esoteric at this point, but as we proceed, rotations of multidimensional vectors will become 

quite familiar and useful for the description of NMR pulse sequences. 

 

Isolated spin systems interact only with radiofrequency (RF) pulses and the chemical shift 

operator.  There are no scalar couplings or other interactions other than relaxation processes with 

any other spins. Isolated spin systems act as a single entity even though the system consists of a 

very large number (~1017) of individual spins.  There are not many good examples of truly 

isolated spin systems among common compounds. 3He and 129Xe are representatives of truly 

isolated spin ½ systems. Two examples considered to be isolated spins systems are the protons in 

12C1HCl3 and 1H2
16O.  The proton in 13C depleted chloroform is not really isolated since the 

chlorine atoms have a nuclear spin of 3/2 and are scalar coupled to the protons, but those 

interactions are very small because the rapid quadrupolar relaxation of the chlorine nuclei 

effectively decouples the chlorine spins from those of the proton.  We will not consider systems 

with spin greater than 1/2.  In water depleted of 17O, which has a spin of 5/2, the two protons are 

magnetically equivalent (they have identical chemical shifts) and so they can be treated as a 

single isolated system.   The state of an isolated magnetization vector, I, can be described by the 



components of a vector in a three-dimensional 

Cartesian coordinate system (Figure 2). For spin 

I, these components are a*Ix, b*Iy, and c*Iz, 

where Ix, Iy,  and Iz  are unit vectors.  Any 

vector can be represented as a vector sum of unit 

vectors, which lie along the coordinate axes.  

The vector sum a*Ix + b*Iy + c*Iz represents a 

vector in three-dimensional space that has 

components (projections of the vector onto the 

reference coordinate axes) of magnitude a along 

the X axis, b along the Y axis, and c along the Z 

axis.  The bulk magnetization vector that lies along the Z axis of the external magnetic field can 

be described by the vector (0*Ix, 0*Iy, 1*Iz).  In the absence of relaxation, the magnitude of the 

magnetization remains constant.  We will assume that the magnetization is normalized and 

therefore length of the vector is unity.   

 

In order to be mathematically complete, there 

is a component, represented by the identity 

element IE, which corresponds to the 

remainder of the spin system that is not 

involved in the bulk magnetization.  This 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A unit vector I decomposed into 
three orthogonal components (a*Ix, b*Iy, 
c*Iz).  The angles N and 2 are polar 
coordinates. 

positive rotation about Y: 
 Z 6 X 6 -Z 6 -X 6 Z 
 
positive rotation about X: 
 Z 6 -Y 6 -Z 6 Y 6 Z 
 
positive rotation about Z: 
 X 6 Y 6 -X 6 -Y 6 X 
 
Table 1. Direction of rotations in a right-
handed coordinate system. 



component corresponds to the majority of spins that have equal numbers in the upper and lower 

quantum mechanical energy levels.  The spin vectors from these spins cancel exactly and do not 

contribute to the NMR magnetization. The symmetry of this component is spherical and, 

therefore, is invariant to any rotation.  The rotational invariance suggests that in most cases we 

can totally ignore this component.  However, it will become important when we generate the 

model for coupled spin systems.  The complete vector description of an isolated spin system is 4 

dimensional, (IE, Ix, Iy, Iz), but since IE does not supply useful information we will use only the 

three Cartesian coordinates,(Ix, Iy, Iz).  In the state vector for any spin system, isolated or not, 

there will always be an identity component that is invariant to rotation. 

 

 Right-handed Cartesian coordinates 

The X, Y, and Z coordinates can be arranged in two orientations, right- and left-handed.  In order 

to retain consistency, all of the coordinate axes and rotations we use here will be right-handed.  

A right-handed coordinate system is such that if one curls the fingers of the right hand, the 

fingers will travel from the X axis to the Y axis and the thumb will point along the Z axis.  

Mathematically, the cross product of the unit vectors X Y⊗  results in a vector aligned along the 

positive Z axis.  In this coordinate system, a positive rotation of a Z vector about the Y axis will 

carry the vector towards the positive X axis (Table 1).  Note that this convention is not universal.   

Many NMR texts rotate the vector in the opposite direction ( e.g. van de Ven,1995). The 

convention used here is that used by Ernst et al in Principles of Nuclear Magnetic Resonance in 

One and Two Dimensions. (##) All positive rotations in this convention are counterclockwise 

around the rotation axis. 



 

In all rotations of the state vector, only 

components that are orthogonal (at right angles) 

to the axis of rotation are affected.  In a 

simplified treatment of NMR spectroscopy that 

neglects the effects of being off-resonance, the 

rotation axes for all interactions lie either along 

the Z (longitudinal) axis or somewhere in the X, 

Y (transverse) plane.  Rotations about the Z axis 

are due to chemical shifts or phase shifts.  

Rotations about axes in the XY plane are due to 

the oscillating magnetic field of RF pulses. As a 

spectroscopist, these are the only available 

interactions with the spin system. 

     

If a Z vector representing the equilibrium magnetization of spin I, (0*Ix, 0*Iy, 1*Iz) or simply Iz, 

is rotated about the X axis by 90E (B/2 radians), the vector will lie along the -Y axis and be 

represented as -Iy (Figure 3).  If the rotation angle is increased to 180E (B radians), then the 

initial vector Iz will rotate to the -Z axis (-Iz). Obviously, a 360o (2B radians) rotation will return  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Rotations of vector I by π/2, π, and 
2π about the X axis.  

x
ˆ

2
π

⎯⎯⎯→
I

z yI -I  
(1) 



the vector to the starting position along the Z axis (Iz). 

   A positive rotation by 90o (B/2) about the X axis of a vector initially along the Z axis will be 

designated by the notation shown in Eqn (1) where the initial state of the spin system is 

represented by Iz, the rotation / 2 xIπ  is placed over an arrow, and the final state is represented by 

-Iy. 

The rotation operator / 2 xIπ , gives information about the angle of rotation (π/2) and the rotation 

axis (X). Letters with a circumflex represent rotation operators. A smaller rotation of say 60E 

about the X axis would leave the 

vector somewhere in the YZ 

plane between the Z axis and the 

-Y axis.  To put this on a more 

quantitative basis we resort to 

simple trigonometry.  Figure 4 

shows the trigonometric 

relationships of the components of a vector that is tilted away from the Z axis toward the Y axis 

by 60E (B/3).  The coefficient of the Z component Iz is equal to cos(60E) and that of the Y 

component -Iy is equal to sin(60E). The notation for a 60E (B/3) rotation of the IZ spin vector 

about the X axis is given in Eqn. (2). 

 
 
 
 
 
 
 
 
 
Figure 4. Components of a vector, initially aligned along the 
Z axis, rotated by π/3 (60o) around the X-axis. The -Y 
component is sin(π/3) and the Z component is cos(π/3). 

x
ˆ

3 cos( ) sin( )
3 3

π π π
⎯⎯⎯→ −

I

z z yI I I
 

(2)   



Note that the rotation is positive, that is, the Z component of I rotates toward the -Y axis with a 

positive rotation about the X axis. Equation (3) is the notation for the general rotation, 2 about 

the X axis. 

x
ˆ

cos( ) sin( )θ θ θ⎯⎯→ −I
z z yI I I  

(3) 

If 2 is 3B/2 (270E), sin(3B/2) = -1 and the final position for the vector is along the positive Y 

axis (Eqn. 4). 

The same result would be obtained by rotating the IZ vector by -π/2 about the same axis, as show 

in Eqn. 5. 

The most commonly used pulsed NMR experiment consists of a single π/2 radio frequency (RF) 

pulse, which rotates the magnetization from the Z into the XY plane, followed by the detection 

of the spins during the acquisition  period,  during which the spin vectors precess at their 

characteristic frequencies (chemical shifts) about the Z axis. During the acquisition time, the 

receiver in the NMR spectrometer is turned on; the signal is detected and digitized. The digitized 

signal is then Fourier transformed to give the familiar one-dimensional NMR spectrum with each 

x
3 ˆ
2 3 3cos( ) sin( ) *0 *1

2 2

π π π
⎯⎯⎯→ − = − ≡

I

z z y z y yI I I I I I (4) 

x
ˆ

2
π

−
⎯⎯⎯→

I

z yI I  
(5) 



of the individual spins giving rise 

to a line in the NMR spectrum. 

 

Figure 5 is a vector picture of the 

single pulse experiment. The 

initial rotation of 90o around the 

X axis places the vector along the -Y axis. During the acquisition time, t, the individual spin 

vectors precess around the Z axis a rate TI. The total angle that the vectors traversed in a given 

time is given by the product of the frequency and the time, Tt. The operator sequence depicting 

this experiment is given in Eqn. 6. 

The Fourier transform of the signal detected in quadrature (two simultaneous, orthogonal 

channels) would give an NMR resonance line at the frequency T. 

 

Rotation Matrices 

The mathematics of vector rotations is found in the realm of matrix algebra.  All rotations can be 

described by the multiplication of a vector by a matrix.  Although we will not use matrix 

multiplications extensively in describing the rotations of NMR, the methods are useful to 

introduce and visualize some ideas that we will encounter later in coupled spin systems.  Matrix 

 
 
 
 
 
 
 
Figure 5. Vector picture of a single pulse experiment. The 
magnetization is rotated by π/2 radians around the X axis and 
then freely evolves around the Z axis at its intrinsic 
frequency (chemical shift). 

x
ˆ

ˆ
2 cos( ) sin( )I t z

I It t
π

ω ω ω− − +⎯⎯→ ⎯⎯→
I

I
z y y xI I I I  

(6) 



multiplications are also easy to program on a computer and can be of great assistance in 

analyzing complicated pulse sequences. 

 

Equation 7 is the matrix representation for the rotation of a magnetization vector I, consisting of 

three Cartesian components Ix, Iy, and Iz, by an angle 2 about the X axis.  The matrix with 3 

rows and 3 columns (3 X 3) is the rotation matrix and it operates on the 1 X 3 row vector that 

represents the magnetization vector.   

 

To review, multiplication of a row vector and a matrix is performed as follows: The vector is 

multiplied, element by element, with the first column of the matrix and the sum of the products 

becomes the first element in the resultant vector.  The row vector times the second matrix 

column gives the middle element of the resultant vector and likewise for the third element. 

Equation 8 shows the general case. 

1 0 0
* * * * 0 cos( ) sin( )

0 sin( ) cos( )
a b c θ θ

θ θ

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

x y zI I I
 

Vector                                 X Rotation Matrix 

(7) 



If a vector, I, has the components [0*Ix,0*Iy,1*Iz] or Iz, then a rotation of π/2 Îx would be 

represented as in Eqn. 9. 

Substituting cos(B/2) = 0 and sin(B/2) = 1, the result is [0*Ix,-1*Iy,0*Iz] or -Iy. 

  As shown above in Eqn. (1), in operator notation the sequence is represented as in Eqn. (10). 

The rotation matrices for vector rotations around the X, Y, and Z coordinate axes are given in 

Eqn. 11. 

 

 

*
a b c
d e f
g h i

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

x y zI I I
 

 ( * * * ) ( * * * ) ( * * * )a d g b e h c f i⎡ ⎤= + + + + + +⎣ ⎦x y z x y z x y zI I I I I I I I I

(8) 

[ ] [ ]

1 0 0 1 0 0
0 0 1* * 0 cos( ) sin( ) 0 0 1* * 0 0 1 0 1* 0

2 2
0 1 0

0 sin( ) cos( )
2 2

π π

π π

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤= = −⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎣ ⎦

⎢ ⎥−
⎣ ⎦

z z yI I I  (9)

x
ˆ

2 cos( ) sin( )
2 2

π π π
⎯⎯⎯→ − ≡ −

I

z z y yI I I I  (10) 



1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

θ θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

θ θ

θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

φ φ
φ φ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

   (11)

ˆ
xθ

⎯⎯⎯→
I

 

ˆ
yθ

⎯⎯⎯→
I

 

ˆ
zφ

⎯⎯⎯→
I

 

In most pulse sequences, there is more than one rotation.  As an example, consider the single 

pulse sequence described above (Eqn. 6) that rotates Iz by 90E about the X axis followed by a 

rotation of an angle ωt about the Z axis caused by a chemical shift.  These rotations in matrix 

notation are shown in Eqn. 12. 

[ ]

/ 2

1 0 0 cos( ) sin( ) 0
0 0 1 * 0 cos( ) sin( ) * sin( ) cos( ) 0

2 2
0 0 1

0 sin( ) cos( )
2 2

I I

I I

x z
z

I t I

t t
t t

I π ω

ω ω
π π ω ω

π π

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥−
⎣ ⎦

⎯⎯⎯⎯→ ⎯⎯⎯→

 

(12)

Note that the order of time sequential matrices is from left to right.  The first rotation is the 

matrix to the immediate right of the row vector and the next rotation matrix is placed to the right 

of the first.  The order of rotations is very important (commutative property). An entirely 

different result would be obtained if the rotation order was zI t Iω then / 2 xIπ . In this case, the 

first rotation would not change the orientation of Iz and the π/2 rotation about the X axis would 



leave the vector along the –Y axis. However, once the physical order of matrices (rotations) is 

established, the order of multiplication is irrelevant (distributive property).  The leftmost matrix 

can multiply the row vector yielding a resultant vector, which is then multiplied by the next 

matrix to give the final vector.  Alternatively, the two matrices can be multiplied together first 

and then the resultant matrix can multiply the vector.  As a refresher, Eqn. 13 shows the general 

method for multiplying matrices. 

For the single pulse experiment (Fig. 5), we can calculate the rotation of the sequence by the use 

of matrices (Eqns. 14).  

The result is the vector [sin(Tt)*Ix, -cos(Tt)*Iy, 0*Iz], which is identical to the result calculated 

above using the operator formalism (Eqn. 6). The operator notation is essentially a shorthand 

method for matrix multiplication. 

 [ ] [ ]

1 0 0 cos( ) sin( ) 0
0 0 1 * 0 cos( ) sin( ) * sin( ) cos( ) 0 ? ? ?

2 2
0 0 1

0 sin( ) cos( )
2 2

t t
t t

ω ω
π π ω ω

π π

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥−
⎣ ⎦

 

 

 [ ] [ ]
1 0 0 cos( ) sin( ) 0

0 0 1 * 0 0 1 * sin( ) cos( ) 0 ? ? ?
0 1 0 0 0 1

t t
t t

ω ω
ω ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (14)

 *
a b c A B C aA bD cG aB bE cH aC bF cI
d e f D E F dA eD fG dB eE fH dC eF fI
g h i G H I gA hD iG gB hE iH gC hF iI

+ + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (13)



 [ ] [ ]
cos( ) sin( ) 0

0 0 1 * 0 0 1 sin( ) cos( ) 0
sin( ) cos( ) 0

t t
t t

t t

ω ω
ω ω

ω ω

⎡ ⎤
⎢ ⎥ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

 

Algorithmic approach 

In practice, an algorithmic approach to the rotation of the magnetization vector simplifies the 

process. Vector rotations in 3 dimensions can be determined by following simple rules. 

1) Rotate each component of the vector independently. 

2) Obtain the result by multiplying the starting vector by cos(angle) 

and adding sin(angle) times the vector obtained by the cross 

product of the rotation axis into the initial vector. The direction of 

the resultant vector of the cross product can obtained from the right 

hand rule by turning the rotation axis into the initial vector axis 

with the thumb pointing toward the final axis.  The argument of the 

sine and cosine functions is the angle of rotation.   

 

An example is probably the easiest way to demonstrate these rules. Take the following sequence 

of rotations in Eqn. 15. 

ÎÎ Î yx z? ? ?t
z

γθ ω
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→I  

(15)

The initial magnetization is at thermal equilibrium along the Z axis (Iz). The magnetization is 



first tipped by an angle of 2 

around the X-axis, it then 

precesses by an angle Tt around 

the Z axis, and is finally rotated 

by an angle of ( around the Y 

axis. 

 Figure 6 represents the motion of 

a 3 dimensional vector initially 

aligned along the Z axis 

subjected to this series of 

rotations.  Starting with the 

vector Iz, rotate, using the right-

hand rule, around the X axis by 

an angle 2. Iz, the initial vector, is 

multiplied by cos(2) and the final 

vector, -Iy, is multiplied by sin(2) (Eqn 16).  

The next rotation of zI t Iω is shown in Eqn.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Motion of a magnetization vector initially along 
the Z axis subjected to the sequence of rotations in Eqns. 16-
18. 

 cos( ) sin( )
Îx

z z yθ θ
θ

⎯⎯⎯⎯→Ι −I I  
(16)



Each of the components, Iz and Iy, are treated independently.  The Iz component is not affected by 

a rotation about the parallel Z axis. The rotation carries the -Iy component towards the Ix axis 

with the appropriate cosine and sine multipliers. Notice that the components retain the 

multipliers that were attached during the first rotation. The final rotation is calculated in Eqn. 18, 

which is further simplified by collecting terms. 

In these calculations, it is apparent that one quickly can become mired in a huge number of 

trigonometric functions and spin operators, which tends to degrade the simplicity of this 

formalism.  The use of a computer can eliminate the difficulty at the expense of a loss of 

understanding.  However, the best approach is to introduce simplifications, which do not 

compromise accuracy, but retain overall clarity for a sequence of rotations.  However, at times it 

 

Îzcos( ) sin( )

cos( ) [ cos( ) sin( )]sin( )

t
I Iz y

I I t I tz y x

ω
θ θ

θ ω ω θ

− ⎯⎯⎯→

+ − +
 

(17)

 

cos( ) cos( )sin( ) sin( )sin( )

[ cos( ) sin( )]cos( )
cos( )sin( )

[ cos( ) sin( )]sin( )sin( )

[cos( )cos( ) sin( )sin( )sin( )]
cos( )sin( )

[sin( )cos( ) cos( )sin(

yI

z x

z

z

x

I I t I tz y x
I I
I ty

I I tx

I t
I ty
I

γθ ω θ ω θ

γ γ θ
ω θ

γ γ ω θ

γ θ γ ω θ
ω θ

γ θ γ

− + ⎯⎯⎯→

+

−

−

≡ −
−

+ + )sin( )]tω θ

 
(18)



is necessary to bite the bullet and just do the entire calculation.    

 

Composite rotations 

In this section of the paper, we return to the matrix multiplication method to show how some 

complicated pulse sequences can be greatly simplified by a few manipulations of the rotation 

matrices. These composite rotation methods are extremely important in the analysis of 

complicated pulse sequences. 

 

One of the most widely used multiple pulse sequences is the spin echo. This pulse-interrupted 

free precession sequence consists of a time delay during which free precession about the Z axis 

due to chemical shift or magnetic field inhomogeneities occurs, a π rotation, and finally another 

time delay with free precession about the Z axis for a time identical in length to the first delay . 

The initial state of the magnetization typically lies in the XY plane. The effect of the spin echo is 

to eliminate all rotations around the Z axis at the echo that occurs at the end of the second free 

precession delay. This is equivalent to eliminating, on average, the rotations due to chemical 

shift and/or magnetic field inhomogeneities during the sequence. This does not imply that 

chemical shift does not occur during the delays, but that at the special, end point of the spin echo 

sequence, the position of the spin vectors, which can have different precession frequencies, does 

not depend on the individual chemical shifts. That is all of the spin vectors are aligned. 

 



Consider a race in which there are some fast, medium and slow runners. At the beginning of the 

race all of the competitors are lined up at the starting line. The gun sounds and the race is on. The 

faster runners speed ahead of the slower runners with the very slowest of them at the rear of the 

pack. This, however, is a rather unusual race in that at a given time the gun is fired again. At that 

time the runners stop, turn 

around, and run back toward the 

starting line. For the fastest 

runners, the distance back to the 

starting line is further than that of 

the medium runners and 

obviously the very slowest runner 

has the shortest distance to run. 

Now assuming that each runner 

maintains the exact same speed in 

the return leg of the race, all of 

the runners will reach the starting 

line at the same time. This is the 

echo. In NMR spectroscopy, the 

nuclei in a molecule all have different frequencies (chemical shifts). Once the spins are excited 

with a pulse (Fig. 7A) they begin to precess around the Z axis (Fig. 7B). Each spin vector starts 

at the same location but because of the different frequencies will transverse a different angle 

around the Z axis in a given time period t1 (Fig. 7C). A π pulse (along the Y axis in this 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. View from the Z axis of the trajectory of isolated 
spin vectors subjected to a t1:πy:t2  spin echo sequence. The 
pulse sequence is at the top. The sequence starts immediately 
after an initial / 2 xIπ  pulse rotates the Z magnetization onto 
the -Y axis. A yIπ  between  



example) between positions C and D in Fig. 7 reverses the direction of the precession for each of 

the spins (Fig. 7e). After the time t2 all of the vectors realign (Fig. 7F).  The calculation of this 

sequence using product operators starting after the initial π/2 pulse is given in Eqn. 19.  
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(19)

This simple result is totally independent of the frequencies of the spin vectors. Just as in the race, 

all of the runners arrive at the start/finish line at the same time. It would seem that with such a 

simple result, it would seem that there should be an easier way to calculate this pulse sequence. 

One obvious result of the calculation is that formally the spin echo is equivalent to a 0° rotation 

about the Y axis. This simplicity continues if the phase of the π pulse is switched from the Y axis 

to the X axis. Both vector pictures and operator calculations show that this pulse sequence is 

equivalent to a π rotation about the X axis. The demonstration of this is left to the reader. 

 

Matrix algebra can lead us to an easy method for simplifying operator calculations. Using the 

spin echo sequence as an example, manipulations of the rotation operators can lead to drastic 



simplification. Assuming t1=t2=t, Equation 20 is the time ordered list of the rotation operators for 

the spin echo sequence.  

z y zt I I t Iω π ω⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(20)

 
Any rotation followed by the inverse of the same rotation causes no net motion of the spin 

system.  For example, Eqn. 21 is a π rotation around the Y axis followed by a -π rotation about 

the same axis. A π rotation is equal to a -π rotation, but here the negative sign is explicitly 

included to show the general  form.  

y yI Iπ π−⎯⎯⎯→ ⎯⎯⎯→  
(21)

Intuitively, this rotation will return the magnetization vector to its initial position, since the 

sequence rotates the spin system one way and then just reverses that rotation.  The overall 

rotation is zero; this is equivalent to multiplication by the identity matrix IE. This can easily be 

demonstrated by multiplying the two matrices as shown in Eqn. 22.  

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

y y EI I Iπ π

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−

 
(22)

Multiplying any matrix by the identity matrix returns the original matrix unchanged. We can 

formally introduce an identity rotation anywhere in a pulse sequence.  This little trick is useful in 

simplifying the calculation of a series of rotations. As an example, in the spin echo sequence we 



insert a :y yI Iπ π− sequence before the first precession about Z (Eqn.23). 

y y z y zI I t I I t Iπ π ω π ω−⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(23)

We have not done anything to the overall sequence by introducing these rotations. 

Experimentally this is almost true; there will be a slight perturbation due to the finite width of the 

pulses. The series of rotations enclosed in brackets shown in Eqn. 24, can be simplified by means 

of matrix algebra.  

y y z y zI I t I I t Iπ π ω π ω−⎡ ⎤⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→⎢ ⎥⎣ ⎦  
(24)

Through multiplication of the appropriate matrices for this sequence (Eqns. 36-37), we find that 

the sequence of three operators can be replaced by a single negative rotation of an angle Tt 

around the Z axis (Eqn. 25).  
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(25)

The result from Eqn. 25 indicates that the bracketed sequence of Eqn. 24 can be simplified as in 



Eqn. 26. 

y zI t Iz t Iπ ω ω−⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(26)

The two adjacent Îz rotations (bracketed in Eqn. 27) are inverses, and their product is IE.  

y zI t Iz t Iπ ω ω−⎡ ⎤⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→⎢ ⎥⎣ ⎦  
(27)

Since IE, does not affect the spin system it can be eliminated leaving the single πy rotation in 

Eqn. 28. 

yIπ⎯⎯⎯→  
(28)

This is the result anticipated from the vector picture and the full calculation above.  

 

This composite rotation approach is general; whenever there a spin echo sequence either alone or 

embedded in a larger pulse sequence, during the period of the spin echo sequence, on average, 

there will be no net chemical shift (nor effects from inhomogeneous magnetic field) experienced 

by the spins involved. There may be a phase shift depending on the phase of the π pulse. Another 

point to consider is that the manipulation of the rotation operators was carried out independently 

from the spin vectors. This implies that this simplification is valid for any initial spin state.  

 yI
z zI Iπ

⎯⎯⎯→−  
(29) 

If for example, there was no π/2 pulse at the beginning of the sequence in Fig. 7, then the initial 

state for the spin echo sequence would be Iz. From Eqn. 28, this would lead to the result in Eqn. 

29. Again this fits with both the vector picture and the full calculation (not shown). 



Spin echoes and pulsed field gradients 

Imperfections in pulses can lead to unexpected 

peaks (artifacts) in NMR spectra. One technique to 

suppress these imperfections that is in common use 

is the pulsed field gradient. Physically, an 

inhomogeneous (usually linear) magnetic field is 

turned on for a short period of time. The field 

gradient causes spins in different parts of the 

sample experience different magnetic field 

strengths and thus different resonance frequencies. 

Figure 8 is a cartoon of the effect of a field 

gradient to a sample of identical spins. The vertical 

axis refers to the vertical spatial dimension of the 

sample in an NMR tube. In Figure 8A, shows the 

response of a magnetization vector with a rotating 

frame frequency of 0 Hz. No precession is 

observed over the time t. Figure 8B depicts the 

behavior of the spins in different parts of the 

spatially varying magnetic field strength during a 

pulsed field gradient. Magnetization in different parts of the sample experience different 

magnetic fields and precess according to frequency given by γΙBG(r), where γΙ is the 

magnetogyric ratio of I and BG(r) is the spatially varying magnetic field. Once the field gradient 

Figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Schematic of the effect of a pulsed 
magnetic field gradient. The vertical slices 
represent the physical vertical extents of the 
sample in a NMR tube. A. Time behavior of 
an ensemble of identical isolated spins having 
a rotating frame frequency of 0 Hz. B. time 
behavior of the spin system in A subjected to 
a pulsed field gradient. C. Vertical projection 
of the spins in B. 



is removed, the precession frequency will return to 0 Hz and no further precession will occur. 

The vectors, however, will retain the phase that they acquired while the field gradient was being 

applied. A vertical projection of the vectors after the field gradient is removed is depicted in 

figure 8C. The vector sum is zero and no signal will be detected.  

 The rotation for a spatially varying magnetic field is shown in Eqn. 30. This rotation is 

very similar to that of the chemical shift operator zI t Iω  as in Eqn. 6. 

( ) cos( ( ) ) sin( ( ) )I zGB r t I
y y xG GI I B r t I B r tγ γ γ⎯⎯⎯⎯⎯⎯→− − +  (30)

In the same way that a spin echo sequence (Fig. 7 and Eqn. 19) refocuses the chemical shift of an 

isolated spin, that pulse sequence can be used to refocus the magnetization vectors dephase by a 

pulsed field gradient (PFG). Figure 9 is the pulse sequence and vector picture for this 

experiment. The PFGs can be placed anywhere within the free precession period, however in 

order to attain refocusing the area under the two PFGs must be identical. Using the same 

methods that were used to simplify the spin echo refocusing of chemical shift, a simple 

composite rotation can be obtained for the dephasing due to the PFGs (Eqns. 31). As would be 

expected, this sequence simultaneously refocuses any evolution due to chemical shift (Eqns. 31).  
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 (31) 



One might note that if the spin 

physically moves vertically in the 

sample tube during the spin echo 

period, the frequency that is 

applied by the PFG at the end of 

the spin echo will not in general 

be the same as that applied at the 

beginning. There will be loss of signal in this case and this is the basis for measuring diffusion 

coefficients of molecules in solution by NMR spectroscopy.    

Conclusion 

In this paper, the vector model for describing the motion of nuclear spin in isolated spin systems 

subjected to a sequence of radio frequency pulses and time delays is presented. The rotations of 

the magnetization vector are related to the product operator formalism and to three dimensional 

rotation matrices. With the aid of the rotation matrices, many multiple pulse sequences can be 

simplified by the use of composite rotations, where multiple steps in a pulse sequence are 

replaced with one or a few simpler steps in order to ease the analysis of the pulse sequence. This 

approach can be used in general for the analysis of other NMR spectroscopic techniques such as 

off-resonance effects, water suppression sequences, and relaxation processes. In the next paper 

of this series, the vector paradigm will be extended to spin systems with scalar (nuclear spin-

spin) coupling. 

 

 

 
 
 
 
 
 
 
 
 
Figure 9. Pulse sequence and vector picture for a spin echo 
sequence with matching pulsed field gradients situated on 
opposite sides of the π pulse. 


