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A popular approach to the description of NMR pulse sequences comes from a simple vector 

model, in which the motion of the spins subjected to RF pulses and chemical shifts is described 

by the rotations of a classical vector in three-dimensional space.  The major weakness in this 

model is that spin systems that contain scalar coupling are not adequately described.  The 

ultimate description of NMR experiments is through the application of density matrix theory.  

However, this treatment is not very transparent (or understandable to the uninitiated) and does 

not lead easily to an intuitive feel for the behavior of spins in NMR experiments.  In 1983, 

several groups independently introduced the product operator formalism as a simplification of 

density matrix theory(##).  In this treatment, the density matrix is expanded as a linear 

combination of a basis set of operators.  The product operators resolve the density matrix into a 

set of elements that can be visualized as generalized magnetization vectors, often referred to as 

coherences.  The motion of the product operators subjected to RF pulses, chemical shifts, and 

coupling is analogous to the motion of the classical magnetization vectors in three-dimensional 

space and thus the popular vector model can be extended to spin systems that contain scalar 

coupling.   

 

Every interaction in NMR spectroscopy of liquids, e.g. chemical shift, scalar coupling, and RF 

pulses, can be formally represented as a rotation or sequence of rotations of a vector. All 

orthogonal rotations of any vector involve a maximum of three coordinates: the axis about which 

the vector is rotated and two axes that are orthogonal (90E) to the rotation axis.  In NMR the 

dimension of the state vector which describes the spin system can be quite large.  In coupled spin 

systems, a 16 dimensional vector is needed to describe the motion of two spins and a 64 



dimensional vector is required for three coupled spins.  In general, the dimensions of the space 

required to describe the spin motion in a system with N coupled spins is 4N. However, all 

rotations occur in three dimensional subspaces involving only one rotation axis and two 

orthogonal axes.  Many of these subspaces have no physical analog, but since they are three 

dimensional rotations, a picture of the rotations can be constructed by using a three dimensional 

framework with the appropriate labels for the axes.  This all may seem very esoteric at this point, 

but as we proceed, rotations of multidimensional vectors will become quite descriptive. 

 

In the previous paper in this series, the vector model was applied to isolated spin systems and 

related to the product operator formalism. In this paper the vector model will be extended in the 

framework of product operators to describe the motion of coupled spin systems. 

 

Description of Coupling 

For an ensemble of non-interacting spins in a magnetic field, the classical description of the 

magnetization as a vector gives results identical to the quantum mechanical description given by 

the density matrix treatment.  It is only in the presence of scalar coupling or other strictly 

quantum mechanical interactions that the evolution of a spin system can not be described by 

classical mechanics.  However, since most of the interesting and useful cases in modern NMR 

spectroscopy involve quantum mechanical interactions, the vector model must be abandoned or 

modified. 

 

An intermediate approach to the description of NMR experiments involving scalar coupling is to 

use a classical vector model supplemented with results from quantum mechanics (See Benn and 



Gunther (1983) and Turner(1984)).  This approach, while lending some insight to the mechanics 

of some simple pulse sequences, can lead to misunderstandings and wrong conclusions about the 

behavior of the spin system.  This approach completely fails to describe multiple quantum 

coherence.  The density matrix treatment is the most complete description of the spin system that 

is possible.  The product operator formalism is a shorthand form of the density matrix description 

that keeps the correctness of the density matrix treatment, but at the same time, allows the 

experimentalist to retain a semblance of intuition. 

 

Coupled Spin Systems 

From the viewpoint of the 13C nucleus in a coupled spin system I-S, such as in a 13C-1H moiety, 

the system can be described as a mixture of two different compounds, one compound with the 

carbon attached to a  1H spin up (") and an almost equimolar amount of molecules with the 

carbon attached to a 1H spin down ($).  This description is commonly used to calculate the 

patterns of lines in a coupled spin system.  For 13C - 1H the two species present are 13C with a 1H 

spin up and one with a spin down. 

13C 1Hα 
13C 1Hβ 

Since there are nearly equal numbers of α and β H 

spins, there are two 13C spectral lines of (nearly) 

equal intensity.  The frequency difference between 

the peaks is due to the local magnetic field of the 

coupled 1H spin, the α spin increases and the β spin 

decreases the magnetic field felt at the 13C nucleus. 

 
 
 
 
 
 
 
 
 
 
Figure 1. Doublet formed from the 
coupling of one spin with another spin 
½ nucleus. The α and β labels refer to 
the spin states of the coupled nucleus 
that give rise to different local magnetic 
fields and thus different frequencies for 
the coupled spin. 



The spectrum consists of two lines separated by the 

coupling constant JIS in Hertz (Figure 1). 

 

For a C-H2 moiety, We have one state with parallel 1H 

spins up, two states with the 1H spins aligned 

oppositely, one state with parallel 1H spins down. 

13C - αα 

13C - αβ & βα  

13C - ββ 

This gives a spectrum with three lines separated by J (assuming the same coupling constant for 

both 1H spins) with an intensity ratio of 1:2:1 (Figure 2). 

 

Similarly, for a methyl group CH3 there are 4 possible states, which gives a spectrum containing 

4 lines separated by J in a 1:3:3:1 intensity ratio (Figure 3). 

13C – ααα 

13C – ααβ αβα βαα  

13C – ββα βαβ αββ 

13C - βββ 

The splitting of these lines in coupled systems arises 

from the nucleus being subjected to different magnetic 

fields depending on the arrangement of the coupled 

nuclei. This effect is a bit difficult to comprehend from 

the viewpoint of classical mechanics since the 

 
 
 
 
 
 
 
 
 
Figure 2. Triplet formed from the 
coupling of one spin with two other 
spin ½ nuclei. The coupling constants 
to the two coupled spins are identical. If 
the coupling constants were not 
identical then the αβ and βα states 
would differ in energy giving rise to 4 
peaks. 

 
 
 
 
 
 
 
 
 
 
Figure 3. Quartet formed from the 
coupling of one spin with three other 
spin ½ nuclei. The coupling constants 
to the two coupled spins are identical. 



interaction between two bar magnets (or two nuclear magnetic moments) averages to zero if 

every orientation is allowed. In solution, the molecule tumbles randomly and in a classical 

description the splitting should be averaged to zero. Quantum mechanics is strange; the splitting 

is invariant to molecular rotation. 

 

2 Semiclassical Picture of Coupling 

Before embarking on the product operator description of coupling, it is useful to obtain an 

intuitive picture of coupling through a semi-classical approach.  This approach was described by 

Lynden-Bell et al.###  Assume a heteronuclear spin system I-S with a non-zero scalar coupling 

between the two spins, JIS <> 0, e.g. the coupled 1H13C in HC-Cl3.  A 90E pulse applied to Sz  

magnetization, generates transverse coherence -Sy. 

/ 2 xS
z yS Sπ⎯⎯⎯→ −  (1)

The state vector -Sy is composed of vectors from two very nearly equal populations of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Evolution of a transverse spin S that is coupled to another spin I with states α and 
β.  



molecules: those coupled to I spins in the α state and those coupled to I spins in the β state 

(Figure 4 position A). The local magnetic fields experienced by the S spins in these two 

populations are slightly different because of the different magnetic fields generated by the α and 

β I spins.  Therefore, the two types of S spins have slightly different precession frequencies.  For 

example, in a proton-coupled 13C spectrum of chloroform, there are two resonance lines with the 

frequency difference being equal to the coupling constant.  If the S spin is on resonance, i.e. the 

S frequency in the absence of coupling is zero in the rotating frame, then the two -Sy vectors 

arising from the that are attached to α and β I spins will precess apart from one another at the 

coupling frequency (Figure 4).  At time 1/(2*JIS), the two spin vectors will have precessed into 

opposite positions along the X coordinate axis (Figure 4 position B).  As the spins continue to 

precess, the two vectors again become parallel along the Y axis at a total time of 1/JIS (Figure 4 

position C).  At a time of 3/2JIS, the vectors will again be in opposite directions along the X axis.  

Note in (Figure 4 position D) that the α and β spins are negative with respect to the positions in 

(Figure 4 position B).  Finally, at a time 2/JIS the spin vectors return to the -Y axis as in (Figure 4 

position A).   

The observed time domain signal is the sum of the two vectors that are precessing in the XY 

plane.  When the vectors are aligned, a maximum signal will be observed.  When the vectors are 

pointing in opposite directions, a zero signal will be observed.  The observed signal due to the 

coupling can be represented as a cosine function, starting at a maximum, going through zero and 

a negative maximum, then returning through zero to the positive maximum.   In this semi-

classical picture, the observed magnetization vector changes magnitude, but it is not clear from 

this description as to where the magnetization goes when the observed signal is equal to zero. 

 



Quantum Description - Anti-phase Coherence 

For the evolution of an isolated spin vector evolving under chemical shift, we have Eqn 2.  

cos( ) sin( )s zt I
y y s x sS S t S tω ω ω− ⎯⎯⎯→ − +  (2)

If we construct an analogous relationship for the evolution under the coupling operator JIS we 

obtain Eqn. 3.  

Equation 3 represents the evolution of the Sy coherence as the precession of a single vector, 

which does not change in magnitude, about an axis JIS in a plane spanned by two other 

coordinate axes Sy and Q.  This is a three-dimensional space, but what are the axes Q and J?  A 

schematic of this concept is shown in Figure 5. 

Again referring to a semi-classical picture of a coupled spin system, the two counter-rotating 

components that arise from the S 

spin being attached to an α or β spin 

will evolve from along the Y axis 

(Figure 4 position A) to opposite 

directions along the X axis (Figure 

4B) in the time 1/2*JIS, which 

rotates each component by 90o 

around the Z axis. This evolution 

can be represented as Eqn. 4. 

The amount of each of the 

components is given by the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Rotation of a vector around a coupling axis (out 
of the plane) resulting in an oscillation between the Y axis 
and another axis Q. 

cos( ) sin( )ISJ t
y y IS ISS S J t Q J t− − +⎯⎯→  (3)



population of the attached up and down  

 (1/2) ISJ
y y x xS S S Sα β α β⎯⎯⎯⎯⎯→− − −  (4)

 
I spins, " and $ respectively.   The expression in Eqn. 4 can be rearranged to the form in Eqn. 5. 

( )x x xS S Sα β α β− = −  (5)

The quantity ("-$) in Eqn. 5 represents the population difference across the I energy levels and, 

therefore, is equivalent to the longitudinal magnetization of the coupled spin Iz.  One must be 

careful here since we are so close to the edge between classical and quantum effects. More 

precisely, "-$ is proportional to the expectation value Iz.  By substituting Iz for ("-$) one obtains 

Eqn 6. 

( ) x z xS I Sα β− =  (6)

The evolution of Eqn. 4 can be rewritten as Eqn 7. 

cos( ) 2 sin( )ISJ t
y y IS z x ISS S J t I S J t− − +⎯⎯→  (7)

A normalizing factor of 2 has been included the IzSx term, but for the sake of simplicity the 

normalization factors will not be included in the remainder of the manuscript. The IzSx state in 

Eqn. 7 is known as Sx magnetization that is anti-phase with respect to I.  This state is not directly 

observable under any experimental conditions, which is consistent with a picture involving the 

sum of oppositely pointed vectors.  A more general term, coherence, is commonly used in place 

of magnetization for the description of non-observable terms.  The term coherence is also often 

used to describe observable magnetization.   

 

As described above, after arriving at the antiphase state in Eqn. 7, the S vector will continue to 

rotate and align along the Sy axis, and further rotate to the negative antiphase state -IzSx, before 



completing a full cycle back to -Sy.   

 

To represent the evolution of in-phase to anti-phase 

coherence in a vector picture, we must invent a new 

coordinate system that is consistent with the process 

in Eqn. 7. This can be simply done by generating a 3-

dimensional coordinate system and labeling the 

transverse axes with Sy, IzSx in a right-handed 

coordinate system (IzSx along the usual X axis and Sy 

along the usual Y axis).(Figure 6). The only remaining axis that is not known is that of the JIS 

coupling operator. This can be easily obtained by following standard angular momentum 

commutation rules (Appendix ##), but as a visual aid it is useful to examine an algorithmic 

procedure to determine the rotation axis. We already have two of three axes in the three 

dimensional coordinate system and by invoking the rule that rotations of the I spin do not affect 

the S spin and vice versa (commutation of different 

spins) we can easily obtain the third axis.  If there 

were a vector along the IzSx axis and a -π/2 rotation 

is applied around the Sy rotation, the S part of IzSx 

would be rotated to Sz
 (Fig. 7). The I part would be 

unaffected and the third axis would be IzSz. This 

coordinate system can be used in the case of a 

coupled spin system just as the normal X, Y, Z 

system used for an isolated spin.  Also just as in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Generation of the proper third 
axis in a IzSx-Sy coordinate system by a 
π/2 rotation of a vector lying along IzSx 
around Sy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Right-handed coordinate 
system for Sy evolving under coupling 
JIS.  



isolated spin case, any one of these axes can be used as the rotation axis.  

 

From this 3D coordinate system, the JIS coupling rotation axis is IzSz and the S vector rotates 

between the Sy and IzSx axis in a counterclockwise direction for a positive rotation. While the 

axes are not labeled with familiar coordinates of an X,Y,Z system, the rules for calculation of the 

rotation are identical.   

The time dependence can be written as in Eqn. 8.  

cos( ) sin( )z zJt I S
y y z xS S Jt I S Jtπ π π− − +⎯⎯⎯→  (8)

 
Here the normalizing factor has been left out. The transverse magnetization oscillates between 

in-phase ( -Sy ) and anti-phase coherence ( IzSx ). (see Appendix A for further discussion of the 

generation of two spin product operator coordinate systems).  

 

The IzSz operator arises from the form of the scalar coupling interaction J(ICS), in the 

Hamiltonian.  The dot product of I and S is IzSz + IxSx + IySy.  In the weak coupling regime, 

where the difference in chemical shift between the two coupled spins is much greater than the 

coupling constant, terms arising from the rotation around IxSx  and IySy are oscillatory and 

average to zero over time.  This leaves only IzSz for the weak coupling case.  In the case of 

strong coupling, where the chemical shift difference and the coupling constants are similar, the 

transverse terms must be retained. The product operator formalism has been presented for the 

strong coupling case (##Kay ; Van de Ven). We will assume the weak coupling condition in all 

cases except where noted. This simplification is not a failing of this formalism, but the inclusion 

of strong coupling introduces unnecessary complications in the analysis of pulse sequences, 

unless one is specifically interested in the strong coupling regime. 



 

Two-Spin Space 

Without introduction of scalar 

coupling or other interactions, a 

space of three dimensions is 

sufficient to describe the 

behavior of nuclear spins.  Even 

if two different types of non-

interacting spins are under study, 

each spin inhabits its own 

universe (space) described by a 

unique three dimensional coordinate system (See Figure 8).  It seems natural to think of each 

separate spin space as a whole, ignoring the other one.  We can represent the state of the two 

spaces by the by two, three-dimensional vectors or by a single six-dimensional vector (Ix, Iy, Iz, 

Sx, Sy, Sz).  Although it seems natural to think of these as separate spaces, it is just as easy to 

consider the total system as a single six-dimensional space.  The components of the vectors are 

obtained by projecting them onto the six, mutually-orthogonal, axes of this space.  It is not easy 

to grasp more than three dimensions in the minds-eye, but one can always envision three-

dimensional sub-spaces of a higher dimensional space composed of three orthogonal axes of the 

three-dimensional subspace. 

  

The introduction of coupling into a two spin system is analogous to poking a hole in the wall that 

separates the two universes shown in Figure 8 thus allowing the spins to feel the motion of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Representation of two isolated spins I and S. There 
is no interaction between the spins. 



other spin (Figure 9). To 

generate a space that contains 

two interacting spins, I and S, 

the Ix, Iy, Iz, Sx, Sy, and Sz 

operators must be represented 

along with the coupling 

interaction between the spins.  

However, we don't have any 

axes to spare, since all of the 

axes are in use describing the x, 

y, and z components of the two 

individual spins.  To extend the classical vector analogy to include the coupling interaction, there 

must be at least one more axis that is orthogonal to both sets of three-dimensional Cartesian 

coordinates.   

 

Two-Spin Product Operators 

The terms that involve two operators (e.g. IzSx ) are similar to Sx, Sy, and Sz but describe 

coordinate axes that are in a space with more than three dimensions.  In order to describe a spin 

system the space of the description must be large enough to hold all of the information necessary 

to completely define the system.  For a single non-interacting spin the space consists of operators 

that correspond to the three spatial coordinate axes and an identity operator to complete the 

mathematical group.  A spin I would have operators Ix, Iy, Iz, and IE.  The three operators Ix, Iy, 

and Iz are just the Cartesian coordinates for the classical magnetization vector for spin I.  The IE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Representation of two coupled spins I and S. The 
hole in the barrier represents the coupling interaction between 
the spins. Now one spin can feel the effects of the other spin. 



operator can be thought of as the bulk of magnetic spins that have equal populations (saturated 

state) in the α and β quantum mechanical energy levels and thus do not give rise to any net 

magnetization.   

Table 1. Product operators and coherence orders for a coupled two-spin system. 
Name Coherence order Operators Observable? 

Identity 0 E No  

longitudinal 0 Iz, Sz Yes 
(ODMR, magnetometer) 

longitudinal two spin order 0 IzSz No  

single quantum ±1 Ix,Iy,Sx,Sy Yes 

anti-phase single quantum ±1 IxSz, IySz, 
IzSx, IzSy 

Not directly- must evolve into 
single quantum terms under 

coupling 
zero+double quantum 0, ±2 IxSx, IxSy, 

IySx, IySy 
No  

NOTE: A normalization constant equal to 2(number of operators - 1) should multiply 
all of the product operators. 
 

The coordinates (axes) that are required to describe a coupled two spin system are generated by 

the Kronecker products of the I and S spin operators.  In the product operator formalism, the 

Kronecker products can be obtained by taking all possible of the combinations of the I and S 

operators (IE, Ix, Iy, Iz, Se, Sx, Sy, Sz ). The  resultant 16 operators along with their coherence 

orders are listed in Table 1. Mathematically, the order of the operators is important in generating 

the Kronecker products, however there exists a permutation matrix that transforms I ⊗ S to S ⊗ I. 

We will consider IxSz as being identical to SzIx. Extension of the product operators to more than 

two coupled spins is made by taking all combinations of the E, X, Y, and Z operators for each 

coupled spin. As an example in a system with 4 spins, operators of the type IxSzTyPz can be 

obtained. There are 256 (4N) different operators in this spin space. 

 



The only physically observable operators are the terms Ix, Iy, Sx, and Sy with coherence order 1 

corresponding to transverse magnetization that induces current in the receiver coil. The 

coherence order of operators can easily be determined by expressing them as raising and 

lowering operators and summing the pluses and minuses (Eqn. 9).   

1/ 2( )

/ 2( )

x y

x y

x

y

I I iI

I I iI

I I I

I i I I

+

−

+ −

+ −

= +

= −

= +

= − −

 
(9)

 

Iz and Sz, which have coherence order 0, are physically observable terms but are not measured 

directly by NMR techniques.  The anti-phase single quantum terms, e.g. IzSx, which can be 

written as IzS++ IzS-, have coherence order 1 but are formally not directly observable. These 

terms can evolve into observable terms during a free precession period during which the scalar 

coupling operator is active (Eqn. 10).  

cos( ) sin( )z zJt I S
z x z x yI S I S Jt S Jtπ π π+⎯⎯⎯→  (10)

 

In the majority of experiments the anti-phase coherences are the important terms in 

understanding how the experiment works. The vector picture of this evolution is not the same as 

in Figure 7, since the coordinates in Eqn. 10 are Sx, IzSy, and IzSz. The proper coordinate system 

is given in Figure 10. See Appendix A for an algorithmic approach for generating product 

operator coordinate systems. 



The terms with two transverse operators are 

mixtures of 0 and ±2 coherence (for example 

see Eqn 11.) and are not observable. The 

longitudinal two spin order term IzSz has 

coherence order 0 and is also not observable. 

The non-observable terms can be turned into 

observable terms by combinations of RF 

pulses and evolution under the coupling 

operator. 

 

( ) ( )*x xI S I I S S

I S I S I S I S

+ − + −

+ + + − − + − −

∝ + +

= + + +
 

(11)

The product operators in Table 1 can be used in the absence of relaxation to completely describe 

the evolution of a coupled two-spin system during an arbitrary pulse sequence.  The 16 product 

operators that are generated by this procedure can be viewed as the spherically-symmetric 

identity operator E and 15 coordinate axes that are necessary to describe an arbitrary state vector 

of the two interacting spins.  Having more than three dimensions may seem difficult to visualize, 

but it is no more difficult than having a series of experiments with coordinates of e.g. [pH, 

temperature, ionic strength, concentration, E. coli strain] that span a 5 dimensional vector space.  

The extension of the product operator formalism to larger spin systems is straightforward. 

 

In the first paper of this series(##), the spin echo sequence performed on an isolated spin was 

described. That analysis is repeated here, with a slight modification, in order to contrast and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Three dimensional coordinate 
system  for the evolution of Sx under the IzSz 
coupling operator. 



compare the behavior of an isolated spin 

with that of a coupled spin system. 

 

Spin echo: Isolated spin system 

A spin echo sequence, which is a pulse-

interrupted free precession period with a π 

pulse placed at the midpoint ( J - 180N - J ), 

refocuses the chemical shift (and any 

dephasing due to field inhomogeneity) of a 

transverse isolated spin, creating an effective Hamiltonian operator that does not contain a 

chemical shift operator. This sequence does not alter the state of the spin system except for a 

possible phase shift.   

Figure 11 is the pulse sequence for a spin echo sequence applied to a single isolated spin I. An 

initial 90E pulse rotates the spin from the Z axis into the transverse plane. Beneath the pulse 

sequence in Figure 11 is the time domain signal that would be observed if the receiver was 

turned on after the initial 90E pulse. The complicated oscillations in the signal are due to the 

interference between vectors precessing at different frequencies. The signal decays away due to 

both relaxation and inhomogeneities in the magnetic field. The spin echo cannot refocus the 

effects of relaxation but only the decay due to dephasing caused by inhomogeneities in the 

magnetic field. This is shown as decreased amplitude of the echo at point B compared to that of 

the original amplitude A. In this sequence the receiver is usually turned on at point B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Pulse sequence and time domain signal 
for a spin echo experiment.  
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⎡ ⎤⎯⎯⎯→ ⎣ ⎦
⎡ ⎤⎣ ⎦  

(12)

The product operator description for this sequence is in Eqns. 12. At the end of the sequence, 

there is no contribution due to the frequency (chemical shift) of the signal. All signals would 

behave the same behavior irrespective of the frequency. This result could be obtained formally 

by a single rotation of Iz by a -90B pulse around the X axis (Eqn. 13).  

/ 2 xI

z yI Iπ−⎯⎯⎯→  
(13)

Beyond point B (Figure 11), the vectors again precess around the Z axis and dephase due to 

chemical shift and field inhomogeneities. During this time the receiver would usually be turned 

on. The resultant signal would be digitized and stored. A Fourier transform of the signal would 

give the normal NMR spectrum of the system.  

 

A series of i rotations iU  representing the various Hamiltonian operators during the pulse 

sequence can be written as in Equation 14. 



( ) ( ) ( ) ( ) ( )
31 2 4

0
i

U UU U U

t

θ θθ θ θ
σ σ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  

(14)

These distinct rotations can always be combined into a single total rotation applied to F0 (Eqn. 

15). 

( )
0

total
U

t

θ
σ σ⎯⎯⎯→  

(15)

 

In many cases, ( )totalUθ is a single rotation or at most a short series of a few rotations.  By 

reducing the pulse sequence to a series of simple propagators, the experimental pulse sequence 

can be calculated and described in a simple and straightforward manner.  

 

The sequence of the rotation operators for the spin echo sequence for an isolated spin is given in 

Equation 16.  

/ 2 z z
II t I t Iφππ ω ω⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯→ ⎯⎯⎯→  

(16)

With the process described in the previous paper(##), this sequence can be simplified to the two 

rotations shown in Eqn 17. 

/ 2 x II φππ⎯⎯⎯→ ⎯⎯→  
(17)

The final phase of the spin depends only on the phase of the 180B pulse, no chemical shift 

evolution (rotation about the Z axis) occurs.  This is also equivalent to the refocusing of spin 

isochromats in an inhomogeneous magnetic field, where the chemical shift operator is replaced 

by a spatially-varying (inhomogeneous) magnetic field. 



Coupled Two-Spin System – No pulses  

It is useful to investigate the behavior of a coupled spin system during free precession and then 

contrast that behavior with sequences that have π pulses inserted midway through the free 

precession period.  Figure 12 shows the pulse sequence and the vector picture of the spins.   

After rotation of Iz magnetization into the transverse plane, the I spin rotates due to both 

chemical shift (rotation around the Z axis) and scalar coupling to the S spin that causes counter 

rotating I vectors corresponding to I spins coupled to α and β S spins. Since no other interactions 

are applied during the sequence, the spins continue under this Hamiltonian for the entire period. 

Eqn. 18 shows the operators that act during this pulse sequence. There is no easy simplification 

of this sequence.  

/2 z z zzx IS SIJ t I S tSt II π ωωπ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→  (18) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Pulse sequence and vector picture of the evolution of a IS coupled spin system. The 
dashed vector at an angle of ωt in the rightmost panel represents the chemical shift of the spin 
system in the absence of coupling. The vectors labeled α and β are the two components of the 
doublet.  



In the next section Eqn. 19has the full product operator description for this sequence, where t1 is 

equal to the full period of evolution. The zStSω  operator does not impact this sequence since the 

S spin remains along the Z axis for the entire period.  

    

Coupled Two-Spin System - Selective I 180B pulse  

Now we will analyze several variants of the a coupled, two-spin system subjected to a period of 

free precession interrupted with π 

pulses on the I and or S spins .  

The first sequence, which is 

identical to the spin echo 

sequence described above, 

consists of a π pulse on the 

excited, transverse spin, I, placed 

at the center of the evolution 

period with no pulse on the 

coupled partner S. Figure 13 

shows the pulse sequence and 

vector picture for this sequence. For simplicity in the figure, the frequency of I in the absence of 

coupling is set to zero. This means that the vector would not precess around the Z axis in the 

absence of coupling. Even in the presence of a nonzero chemical shift, the results remain the 

same as will be shown by product operators. The I spins are divided into two separate vectors 

representing the I spins coupled to an S spin in the α state and the I spins coupled to an S spin in 

the β state. As discussed above, the presence of an α or β S spin will alter the magnetic field that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Pulse sequence and vector picture for a spin echo 
sequence applied to a IS coupled spin system. Here a 
selective π Ix  pulse is applied midway in the evolution 
period 2t. 



the I spins experiences and therefore the two vectors will have different frequencies.  The vectors 

precess around the coupling axis during the first delay. The π pulse along the X axis applied only 

to the I spin mirrors the vectors across the X axis. During the final delay the vectors refocus 

along the Y axis. This is the identical behavior seen in an isolated I spin system (See Eqn. 17). 

This pulse sequence eliminates the interaction between the I and S spins, in other words they are 

decoupled. 

 

The product operator description for Figure 13 is presented below (Eqns. 19). In this description, 

spin I is assumed to have a non-zero chemical shift. For completeness, all rotations are retained 

for the entire pulse sequence.  
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(19)

Equation 19 is the product operator calculation to point A in Figure 13. The order of computation 

of the evolution under zI , zS , and z zI S  is arbitrary since all of these rotation operators commute 

with one another. Note also that since the S spin is never pulsed, the initial Sz could have been 

dropped from the analysis. Furthermore, since Sx or Sy, is never generated, the chemical shift 

operator Öz does not have any effect and could also be eliminated. This will not be the case if the 

initial state of the S spin is not Sz In Eqn. 20 the analysis is picked up at the πIx pulse and 

continues to point B of Figure 13.  
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(20) 

With t1 equal to t2, this collection of operators and trigonometric functions simplifies to Equation 

21. 

y z
I S+  (21)

This simple result was obvious from the vector picture, but the product operator approach 

generated a large number of terms that eventually canceled. This pulse sequence is very short 

and simple; many pulse sequences contain tens of pulses and evolution delays. The number of 

trigonometric terms involved in the analysis quickly becomes overwhelming. By analogy to the 

isolated spin case, it would seem that there should be simplifications that can be made by 

manipulating the rotation operators. 



  

The rotation operators for this sequence are given in Equation 22. Again note that for a weakly 

coupled spin system the order of the terms during the free precession delays is arbitrary. This is 

not the case, however, for the order of the pulses and delays. The order of terms in a free 

precession delay does matter if the spin system has strong coupling, in fact, the chemical shift 

and the coupling rotations cannot performed separately, but must be carried out simultaneously. 

This complicates the product operator approach without adding much to the overall 

understanding. The assumption of weak coupling will be used here.  

1 11

2 22

/ 2 x S z IS z zI z

x IS z z S zI z

I t S J t I St I

I J t I S t St I

π ω πω

π π ωω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(22) 

Following the method presented in paper 1 of this series (##), an identity operator can be 

introduced without changing the behavior of the pulse sequence (Eqn 23).  

1 11

2 22

/ 2 x S z x x IS z zI z

x IS z z S zI z

I t S I I J t I St I

I J t I S t St I

π ω π π πω

π π ωω

−⎡ ⎤⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→⎢ ⎥⎣ ⎦

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(23)

The bracketed rotations marked in Equation 24 can be simplified (Appendix B##). 

1 1

1

2 22

/ 2

[ ]

x S z xI z

x IS z z x

IS z z S zI z

I t S It I

I J t I S I

J t I S t St I

π ω πω

π π π

π ωω

−

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(24)

 The operators in the brackets simplify to the operator in Eqn. 25. 



1IS z zJ t I Sπ−⎯⎯⎯⎯→  
(25)

Substituting, Eqn. 26 is obtained. 

1 1 21

22

/ 2 [ ]x S z x IS z z IS z zI z

S zI z

I t S I J t I S J t I St I

t St I

π ω π π πω

ωω

−⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→
 

(26)

When t1 = t2 = t, the bracket terms in Eqn. 26 are counter-rotating operators and are equal to the 

identity operator. Simplifying by removing the identity rotation, Eqn. 27 is obtained. 

/ 2 x S z x S zI z I zI t S I t St I t Iπ ω π ωω ω⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(27)

The coupling operator has been eliminated. Except for the zStSω  operators, sequence is now the 

same as that for the isolated spin (Eqn 16) with a πIx pulse. Since rotation operators of different 

spins commute, the ordering of the S and I operators is arbitrary and the zStSω operators can be 

combined as in Eqn. 28. 

/ 2 (2 )x x S zI z I zI I t St I t Iπ π ωω ω⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→  
(28)

Now the first four rotations are the same as for the isolated spin and can be simplified to Eqn. 29. 

/ 2 (2 )

3 / 2 (2 )

x x S z

x S z

I I t S

I t S

π π ω

π ω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

≡ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→  
(29)

Now the computation goes as in Equation 30. 

3 / 2 ( 2 )x S zI t S
z z y z y zI S I S I Sπ ω+ + +⎯⎯⎯→ ⎯⎯⎯→  

(30)

The simplicity of the vector picture has now been translated into a rigorous mathematical 



computation. 

 
Coupled Two-Spin System - Selective S 180B pulse 

A related sequence to that of Figure 13 is one where the 180B pulse is placed in the center of the 

delay but on the S spin. The similarity of this pulse sequence to that in Figure 14 makes an 

interesting comparison. 

The vector picture for this sequence is shown in Figure 14. After the initial 90B the vectors of 

spin I coupled to α S spins and those coupled to β S spins can be treated separately. The local 

field arising from the α S spin causes the coupled I spin to precess counter-clockwise (positive) 

during the t1 delay, while the I spin coupled to the β S spin precesses clockwise. Precession due 

to chemical shift would also affect the trajectory of the vectors, but for clarity the chemical shift 

of the I spin is set to zero. The action of the 180B pulse on the S spin is to swap the α and β spin 

states of S. This causes the labels 

on the I spin vectors to exchange. 

Now the I spin vector that 

originally was coupled to an α S 

spin is now coupled to a β spin 

and will now precess in a 

clockwise (negative) direction. 

Similarly, the other I spin vector 

changes the direction of 

precession since it is now 

coupled to the α S spin. At the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Pulse sequence and vector picture for evolution 
of an IS spin system where a π S pulse is introduced midway 
in the free precession of I spin evolution. Note that the πS 
pulse exchanges the αand β states of S (red).  



end of delay t2, the I spins refocus with respect to the coupling. Had we included a nonzero 

chemical shift, however, the I spin vectors would have precessed at their characteristic chemical 

shift and would not be refocused with respect to chemical shift. 

  

The sequence of rotations this sequence is given in Equation 31. 

1 11

2 22

/ 2 x S z IS z zI z

x IS z z S zI z

I t S J t I St I

S J t I S t St I

π ω πω

π π ωω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(31) 

The full product operator calculation would again involve the calculation of a large number of 

operators and trigonometric functions; however, by using the composite rotation methodology, a 

number of steps can be saved along with the avoidance of possible errors. 

Introducing an identity rotation ( x xS Sπ π− ) into Eqn. 31 and then simplifying the bracketed 

terms marked in in Eqn 32., Eqn. 33 is obtained.  

 

Removing the identity element of the two counter rotating ÎzÖz terms, Eqn. 34 is obtained. 
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/ 2
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S J t I S S S t St I
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(32)
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π ω πω
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(33)



1 21 2/ 2 x S z x S zI z I zI t S S t St I t Iπ ω π ωω ω⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(34) 

Since S rotations do not affect I spins and the S spins are never excited into the transverse plane 

in this experiment, the S terms can be removed leaving Eqn. 35, where t’ is equal to t1+t2. In the 

general case, where S there may be transverse S terms, the S rotations can not be removed. 

'/ 2 x I zI t Iπ ω⎯⎯⎯→ ⎯⎯⎯→  
(35) 

The overall effect of the 180N S pulse is to eliminate the coupling between the I and S spins 

(decoupling). If a 180B pulse applied in the center of a precession period to either spin of the 

coupled pair, the coupling interaction, on average, is eliminated at the end of the precession 

period. If the signal is sampled only at the end of the free precession period, then it will appear 

that the spin is not coupled. However, sampling at times when the 180N pulse is not in the center 

of the free precession period will let a portion of the coupling to remain since the coupling terms 

in Eqn. 33 will not be opposite 

and equal. 

  

Coupled Two-Spin System - 

Simultaneous I and S 180B 

Pulses 

The third example of the effects 

of 180N pulses during free 

precession periods is where both 

I and S 180N pulses are applied at 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Pulse sequence and vector picture for a pulse 
interrupted free precession with simultaneous πI and πS 
pulses at the midpoint.  



the center of a free precession period (Figure 15). Once again for the vector picture, assume a 

chemical shift of zero for the I spin. The α and β labeled I vectors have different precession 

frequencies due to the local field of the α or β S spins. In this sequence, the time allowed for the 

first free precession period is set such that the vectors separate in phase by 90N. This value is 

1/(4*JIS), where JIS is the coupling constant between I and S. The 180N pulse applied to the S spin 

interchanges the α and β spin states of S. This inversion swaps the frequencies of the I vectors 

and direction of their precession reverses. The 180° Ix pulse rotates the I spin vectors to their 

mirror position in the XY plane. The precession due to coupling during t2 brings the vectors into 

opposition along the X axis. This is identical to the antiphase state IxSz as described in Eqn. 7.  In 

this analysis the I and S 180N pulses were treated sequentially. The same result is obtained if the 

pulses are simultaneous or swapped in time order, as long as the difference in time between the 

pulses is much smaller than 1/(4*JIS). Inclusion of both I and S 180N pulses at the midpoint allow 

coupling to continue to evolve. Had a time other than n*1/(4*JIS)been chosen, where n is an odd 

integer,  the state would include both in-phase Iy and antiphase IxSz coherence. Choosing 

n*1/(2*J) would yield pure in-phase Iy coherence. 

 Equation 36 shows the sequence of rotations for this pulse sequence. 

1 11

2 22

/ 2 x S z IS z zI z

x x IS z z S zI z

I t S J t I St I

I S J t I S t St I

π ω πω

π π π ωω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(36) 

Introducing an identity x xS Sπ π− one obtains Eqn. 37. 
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−

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→
 

(37)

Simplifying the bracketed terms in Eqn. 37 and introducing x xI Iπ π− , Eqn. 38 is obtained. 
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I J t I S I I S
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− −

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→
 

(38) 

Simplifying the bracketed terms gives Eqn. 39. 

1 1 21

22

/ 2 x S z IS z z IS z zI z

x x S zI z

I t S J t I S J t I St I

I S t St I

π ω π πω

π π ωω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

(39)

Combining the adjacent IS z zJ t I Sπ  terms gives Eqn. 40. 

1 2 1 2

1 2

/ 2 ( )x IS z z S z x S z

xI z I z

I J t t I S t S S t S

It I t I

π π ω π ω

πω ω

+⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
(40) 

Removing the chemical shift terms by introducing π rotation identities and simplifying as above 

with t1=t2=t, Eqn. 41 is obtained. 

/ 2 x IS z z x xI J t I S S Iπ π π π⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(41) 

 



The simultaneous π pulses on I and S in the center of the spin echo eliminates the chemical shift 

for both I and S spins and allows scalar coupling to evolve for the entire period.  

 

To recapitulate, there is one case of pulse-interrupted free precession for an isolated spin system 

I and there are 3 cases for an I-S coupled spin system. Below are a set of rules for these cases, 

including the case of free precession without any pulse interruptions. These rules are general in 

that they do not depend on the state of the I or S spin that enters the period. As a simplification, 

the absolute phase of the coherences at the end of the pulse-interrupted free precession period is 

not included these rules. In situations where the phase is important, Eqns. 18, 29, 35, 41 contain 

the required rotations. The phase for an isolated spin can be determined from Eqn. 17. 

1) Isolated spin I: no pulses during the free precession period 

a. The chemical shift (and magnetic field inhomogeneities) of the I spin evolves for 

the full period 

2) Isolated spin I: A πI pulse at the midpoint of the free precession period 

a. No net chemical shift evolution of I for the free precession period  

3) Coupled IS spin system: no pulses during the free precession period 

a. The chemical shifts (and magnetic field inhomogeneities) of the I and S spins 

evolve for the full period 

b. Coupling evolves for the full period 

4) Coupled IS spin system: a πI pulse at the midpoint of the free precession period 

a. No net chemical shift evolution of I for the free precession period  

b. The chemical shift of S evolves for the full period 

c. No net coupling at the end of the period; the system is decoupled 



5) Coupled IS spin system: a πS pulse at the midpoint of the free precession period 

a. The chemical shift of I evolves for the full period 

b. No net chemical shift evolution of S for the free precession period  

c. No net coupling at the end of the period; the system is decoupled 

6) Coupled IS spin system: Simultaneous πΙ and πS pulses at the midpoint of the free 

precession period 

a. No net chemical shift evolution of I or S for the free precession period  

b. Coupling evolves for the full period 

 

With these rules in hand, it becomes straightforward to determine the behavior of many pulse 

sequences by inspection.  

Decoupling 

Consider a simple application of 

these rules in the experiment 

where there is a coupled spin 

system but during acquisition 

decoupling is applied. This is a 

normal situation when observing 

13C spectra. The multiplets due to 

coupling to 1H spins are usually 

suppressed by decoupling. Figure 

16 is a (naïve) approach to 

decoupling a coupled spin system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Example of a possible (but not very good) 
method for decoupling. The diamonds are the data points 
that are digitized in the NMR receiver. The pulses at the 
bottom are π rotations on the coupled nuclei placed at the 
midpoint of the data samples.  



during acquisition. The detected NMR signal (free induction decay) is represented as the solid 

line and the diamonds are the sampling points. No pulses are applied to the detected signal 

during acquisition. The pulses at the bottom represent π pulses on the coupled spin placed at the 

midpoint of the sampling delay. This is identical to a free precession period for an I spin with a 

πS pulse applied at the midpoint of the period. Since the only data points that are sampled are at 

the end of the period, Eqn. 35 shows that the detected signal has no coupling information. The I 

signal is decoupled from the S spin. This is not a very good decoupling sequence in practice, the 

power dissipated from the rapid πI pulses will likely boil the sample and probably cause damage 

to the NMR probe. This is, however, a very common method for decoupling during the chemical 

shift labeling periods, t1, in the indirect dimensions 

of multidimensional NMR. Only one pulse is 

applied since only one data point is collected per t1 

point and therefore there is not a problem with 

power dissipation. 

 

Spectral editing  

As another example of the use of these pulse-

interrupted free precession sequences, consider a 

large molecule with only one atom substituted with 

100 % 13C. The remaining carbon atoms have the 

natural abundance of 13C (1%) and will be ignored 

in this discussion. A 1H-13C editing sequence can 

be designed to resolve the single 1H-13C in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Pulse sequences used to edit 
coupled spins from uncoupled spins. 
Sequences A and B were discussed above. 
Sequence C is a typical implementation 
that combines experiments A and B. The S 
π pulse is split into two π/2 pulses and the 
phase of one is inverted every other 
acquisition along with inverting the 
receiver phase. 



presence of a large number of 1H-12C resonances.   By combining the results of the pulse 

sequences shown in Fig. 17, we can separate the protons that are isolated (1H-12C) from those 

that are coupled (1H-13C). The composite rotation for Fig. 17A is contained in Eqn. 42 and that 

for Fig. 17B is in Eqn. 43. In this experiment, the phases of the coherences are important, so all 

of the rotation operators in the composite rotations will be included. 

3 / 2 (2 )x S zI t Sπ ω⎯⎯⎯⎯→ ⎯⎯⎯⎯→  
(42)

/ 2 2x IS z z x xI J t I S S Iπ π π π⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
(43)

 

For an isolated spin, the coupling operator in Eqn. 43 does not affect the behavior of the I spin in 

the free precession period since there is no S coupling partner. The product operator computation 

of Eqns. 42 and 43 for an isolated spin I (1H-12C) and a coupled IS spin system (1H-13C) is given 

in Table 2. 

Table 2. Calculation of an isolated and coupled spin system subjected to the pulse 
sequences in Figs. 17A and 17B 

1 1H-12C (2 )3 /2 zx S t SS
z y yI I Iωπ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→  

2 1H-12C /2 z zx IS x xJ t I SI S I
z y y y yI I I I Iππ π π⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→− ⎯⎯⎯⎯→− ⎯⎯⎯→−  

3 1H-13C (2 )3 /2 zx S t SS
z y yI I Iωπ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→  

4 1H-13C 

2/2 cos( 2 ) sin( 2 )

cos( 2 ) sin( 2 )

cos( 2 ) sin( 2 )

IS x z IS

IS x z IS

IS x z IS

z zx IS

x

x

J t I SI J t I S J tz y y
S J t I S J ty
I J t I S J ty

I I I

I

I

ππ π π

π π π

π π π

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→− +

⎯⎯⎯⎯→− −

⎯⎯⎯→ −

−

 

 



The response of the isolated spin to both sequences is identical. Both sequences leave the spin in 

the Iy state. If the free precession time t is set to 1/2JIS giving a total time of 1/JIS, the equation in 

line 4 of Table 2 simplifies to -Iy.  For the coupled spin system, the phase is inverted relative to 

the experiment in line 3. In order to combine the two spectra from the coupled spin system, the 

data sets must be subtracted. This will eliminate the signals from the isolated spin, since the 

phase is the same in the two experiments. Figure 17C shows a typical implementation of this 

experiment. In this experiment the πS pulse is broken into two π/2 pulses. In the odd numbered 

acquisitions the phase of the two π/2 pulses are the same and therefore the total rotation of S is 

by π. The data is summed to memory. In the even numbered acquisitions, the phase of one of the 

π/2 pulses is inverted making the total rotation 0. This essentially removes any pulse on the S 

channel. The data from this experiment is subtracted from the data of the odd numbered 

acquisitions.  

 





Coherence transfer: INEPT 

The INEPT sequence. S chemical shift terms are ignored. If chemical shift existed it would be 

eliminated by the xSπ⎯⎯⎯→ term. 

/ 2 / 4

/ 4

/ 2 / 2

x I z z z

x x z z

y xI z

I t I I S

I S I S

I St I

π ω π

π π π

π πω

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→
 

 

As above in the simultaneous I and S 180B pulse calculation, π identities are introduced for both I 

and S spins. 

/ 2

/ 4

/ 2 / 2/ 4

x I z

x x

x x

x xz z

y xz z I z

I t I

S S

I I

I SI S

I SI S t I

π ω

π π

π π

π ππ

π ππ ω

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

 

 

Simplifying the coupling term as above. 

/ 2

/ 2

/ 2 / 2

x I z

x x

z z

y xI z

I t I

S I

I S

I St I

π ω

π π

π

π πω

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

 

 



Removing the I chemical shift terms,  

/ 2

/ 2

/ 2 / 2

x x x I z

x x

z z

y xI z

I I I t I

I S

I S

I St I

π π π ω

π π

π

π πω

−⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

 

 

One obtains 

/ 2

/ 2

/ 2 / 2

x x

x

z z

y x

I I

S

I S

I S

π π

π

π

π π

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

 

 

We can further simplify the sequence by introducing π/2 rotation identities.   

/ 2

/ 2 / 2 / 2 / 2

/ 2

/ 2 / 2

x x

x

y y x x

z z

y x

I I

S

I I S S

I S

I S

π π

π

π π π π

π

π π

− −

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

 

 

Rotating the z zISJ t I Sπ⎯⎯⎯⎯⎯→  term by the /2 /2y xI Sπ π⎯⎯⎯⎯→ ⎯⎯⎯⎯→  terms. 



/ 2

/ 2 / 2

/ 2

x x

x

y x

x y

I I

S

I S

I S

π π

π

π π

π−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→  

 

Simplifying. 

/ 23 / 2

3 / 2

/ 2

yx

x

x y

II

S

I S

ππ

π

π−

⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→  

 

Calculation starting from Iz. 

/ 23 / 2

3 / 2

/ 2

yx

x

x y

II
z y y

S
y

I S
z y

I I I

I

I S

ππ

π

π−

⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→
 

 

Calculation starting from Ix. 



/ 23 / 2

3 / 2

/ 2

yx

x

x y

II
x x z

S
z

I S
y y

I I I

I

I S

ππ

π

π−

⎯⎯⎯⎯→ ⎯⎯⎯→−

⎯⎯⎯⎯→−

⎯⎯⎯⎯→
 

 

 



Refocused INEPT 

/ 2 / 4

/ 4

/ 2 / 2

/ 4

/ 4

x I z z z

x x z z

y xI z

S z z z

x x

S z z z

I t I I S

I S I S

I St I

t S I S

I S

t S I S

π ω π

π π π

π πω

ω π

π π

ω π

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

 

 

Simplifying the INEPT. 

/ 23 / 2

3 / 2

/ 2

/ 4

/ 4

yx

x

x y

S z z z

x x

S z z z

II

S

I S

t S I S

I S

t S I S

ππ

π

π

ω π

π π

ω π

−

⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

 

 

 

 

 

 

 



The refocusing part is simplified using the same techniques 

/ 23 / 2

3 / 2

/ 2

/ 2

yx

x

x y

x x

z z

II

S

I S

I S

I S

ππ

π

π

π π

π

−

⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

 

 

 

Starting from Iz: 

/ 23 / 2

3 / 2

/ 2

/ 2

yx

x

x y

x x

z z

II
z y y

S
y

I S
z y

I S
z y z y

I S
x

I I I

I

I S

I S I S

S

ππ

π

π

π π

π

−

⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→−

⎯⎯⎯→ ⎯⎯⎯→−

⎯⎯⎯⎯→

 

 



INEPT-reverse INEPT (Editing) 

/ 2

/ 2 / 2

/ 2

/ 2

/ 2/ 2

x x

x

y x

x y

x y

yx

x x

I I

S

I S

I S

I S

IS

S I

π π

π

π π

π

π

ππ

π π

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

 

 

 

/ 2

/ 2 / 2 / 2

/ 2 / 2 / 2

/ 2/ 2

x x

x

y y y

x x x

x y

yx

x x

I I

S

I I I

S S S

I S

IS

S I

π π

π

π π π

π π π

π

ππ

π π

−

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

 

 

 



/ 2 x x

y

z z

x x

I I

I

I S

S I

π π

π

π

π π

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

 

 



HSQC-Heteronuclear Single Quantum Correlation (coupled) 

1 1

22

/ 2

/ 2 / 2

/ 2

/ 2

/ 2/ 2

x x

x

y x

x y

S z IS z z

x y

yx

x x

IS z zI z

I I

S

I S

I S

t S J t I S

I S

IS

S I

J t I St I

π π

π

π π

π

ω π

π

ππ

π π

πω

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯⎯→

 

 

 

 

 

 

 

 

 

 

 

 



HSQC-Heteronuclear Single Quantum Correlation (decoupled) 

1 1

1 1

2

/ 2

/ 2 / 2

/ 2

/ 2

/ 2

/ 2

/ 2/ 2

x x

x

y x

x y

S z IS z z

x

S z IS z z

x y

yx

x x

I z

I I

S

I S

I S

t S J t I S

I

t S J t I S

I S

IS

S I

t I

π π

π

π π

π

ω π

π

ω π

π

ππ

π π

ω

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

 

 

 



1

1

2

/ 2

/ 2 / 2

/ 2

/ 2

/ 2

/ 2

/ 2/ 2

x x

x

y x

x y

S z

x

S z

x y

yx

x x

I z

I I

S

I S

I S

t S

I

t S

I S

IS

S I

t I

π π

π

π π

π

ω

π

ω

π

ππ

π π

ω

−

−

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

 

 

 



Filtered 

 

/2

/2 /2

z zzx ISI

x x

z zz ISI

x x

J t I St II

S I

J t I St I

I S

πωπ

π π

πω

π π

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

 

 

 

 

/2

/2 /2

/2 /2

2

/2 /2

x x x

x x

x x

z zIS

x x

I S I

I I

S S

J t I S

I S

π π π

π π

π π

π

π π

⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→
−⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→
−⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

 

 

 

 

/2

/2 /2

2

x x x

x x

y yIS

I S I

I S

J t I S

π π π

π π

π

⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯→

 

 

 

 

/2

/2 /2

2

x x x

x x

y yIS

I S I
z y y y

I S
z z

J t I S
x y

I I I I

I I

I S

π π π

π π

π

⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯→

− −

 

 



Appendix A. Algorithmic approach to commutators 

The 3 dimensional axes that are used to describe the rotations of the product operators are 

obtained through the use of the commutation rules for angular momentum. Equation A1 and its 

cyclic permutations are the basic angular momentum commutators. 

, * *x y x y y x zI I I I I I iI⎡ ⎤ = − =⎣ ⎦  (A1)

 

If the cyclic order is changed by one interchange, then the result is negated. These commutation 

relationships can be shown easily through multiplications of the Pauli matrices (Eqn A2). 

 

1 0 0 1/ 2 0 / 2 1/ 2 0
0 1 1/ 2 0 / 2 0 0 1/ 2

E x y z

i
i

I I I I

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(A2)

The Pauli matrices are the density matrices for a single isolated spin. Equation A1 can be 

calculated as in Eqn. A3. 

0 1/ 2 0 / 2 0 / 2 0 1/ 2
* *

1/ 2 0 / 2 0 / 2 0 1/ 2 0
* *

/ 4 0 / 4 0 1/ 2 0
*

0 / 4 0 / 4 0 1/ 2

x y y x

z

i i
i i

I I I I

i i
i

i i
iI

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(A3)

      

Kronecker products for coupled spins can be generated by the matrix operation in Eqn A4, which 



shows the method for determining the density matrix of IxSz. 

 

11 12

21 22

1/ 2 0 1/ 2 0
0* 1/ 2*

0 1/ 2 0 1/ 2

1/ 2 0 1/ 2 0
1/ 2* 0*

0 1/ 2 0 1/ 2

0 0 1/ 4 0
0 0 0 1/ 4

1/ 4 0 0 0
0 1/ 4 0 0

x z x z
x z

x z x z

I S I S
I S

I S I S

⎡ ⎤
⊗ = ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 
(A4)

 

There are a number of other more complex commutators that can be derived from Eqn. A1-A3, 

but there is a simple algorithmic approach to constructing the angular momentum commutation 

rules.  The following algorithm starts from knowledge of two operators, here the state spin 

operator (the vector to be rotated) and the rotation operator. This algorithm constructs the label 

for the third axis of a 3-dimensional coordinate system (the commutator) that is consistent with 

the angular momentum commutation rules for this rotation or indicates that the operators 

commute and that a three dimensional coordinate system is not possible.  

 

Only bilinear operators are allowed. 

Active spins 

Passive spins 



I. Need to generate a right-handed xyz triplet for one (and only one) spin. 

II. One axis must be a X, Y, or Z operator. No three dimensional axis system is possible 

where all three axis are labeled with a product of two operators unless the other 

operator is a passive spin.  

III. The other two axes must be interchangeable by the X, Y, or Z rotation. 

 

Example 1: 

State_1 = IzSx  State_2 = IzSz 

IzSz can be rotated into IzSx by a rotation about Sy. 

The proper right-handed coordinate system is shown in Figure A1. 

Example 2: 

State_1 = Ix  State_2 = IySx 

Ix rotates IySx into IzSx. 

The proper right-handed coordinate system is shown in Figure A2. 

Example 3: 

State_1 = Iz State_2 = IzSz 

Iz is parallel to the Iz term in IzSz. No rotation can take place and there is no possible coordinate 

system.  

Example 4: 

State_1 = IxSy State_2 = IzSz 

No single X, Y, or Z rotation can rotate IxSy into IzSz. No coordinate axis system can be drawn. 

Example 5: 

State_1 = IzSxTx State_2 = IzSz 



The T spin is passive. IzSz can be rotated into IzSx by Sy. The third state is SyTx. 



Appendix B Equivalent rotations. 

 

 Equation B1 represents a series of rotations that are to be simplified. The general feature of this 

sequence is a rotation operator surrounded by two identical but opposite rotations.  

 
U Q U−⎯⎯→ ⎯⎯→ ⎯⎯→  

(B1)

 This series of operators can be simplified by rotation of the central operator by the rightmost 

operator using the standard rules for rotations (Eqn. B2).   

'UQ Q⎯⎯→  
(B2)

 
The equivalent, simplified rotation operator to that series in Eqn. B1 is given in Eqn B3.  

'Q⎯⎯→  
(B3)



This can be proven mathematically by a series expansion the unitary transforms (Eqn. B4).  

This equivalence could also be shown through the use of matrices as in paper 1 of this series. 

(##). 

As a concrete example, assume that in a series of rotation operators, the sequence in Eqn. B5 is 

found. 

 
/ 2 / 2x xz zS SJt I Sπ ππ−⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯→  

(B5)

The B/2 operators surrounding the central operator are opposites and therefore the total sequence 

can be simplified by rotating the central operator by the rightmost operator. Note that this 

operation is rotating rotation operators. It follows the same rules as for rotating spin operators.  

The original sequence of Eqn. B5 can be substituted with Eqn. B6. 
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z yJt I Sπ−⎯⎯⎯⎯→  
(B6)

This procedure does not always give simple results (e.g. Eqn B7), but with judicious choices of 

the inserted identity operators, complicated sequences can be often simplified to a few simple 

rotations. 

The composite rotation containing the non-commutating operators Îz and Îy does not simplify to 

an "easy" rotation operator around the X, Y, or Z axis (Eqn. B8). The rotation axis for this 

operator is along a vector that is 45° rotated from the Z axis in the YZ plane.  
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(B7)
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