
  



  

Stimulated emission

Spontaneous emissionAbsorption

Einstein, A. (1916). "Zur Quantentheorie der Strahlung". Mitteilungen der Physikalischen Gessellschaft Zürich. 18: 47–62.
                                    “quantum theory of radiation”

Photoelectric effect



  

Einstein coefficients: spontaneous emission 

Lifetime for visible light:
10-6 → 10-8 s



  

Spontaneous emission  does not occur in NMR. 
Only stimulated emission and absorption

600Mhz 6x10^-6 Kcal/mol 
500 Thz (green light) ~53 kcal/mol



  

Stimulated emission

Spontaneous emissionAbsorption

Photoelectric effect
NMR

Oscillating 
magnetic field
(RF pulse)



  

Stimulated emission

Spontaneous emissionAbsorption

Fluctuating 
magnetic field
from motion

Photoelectric effect
NMR



  

Rotational correlation time (τ
c
) is the average time it takes for a molecule to rotate one radian.

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Radian


  

● Dipole-dipole
● interaction between magnetic dipoles

● Chemical shift anisotropy
● non-spherical electron environment

● Quadrupolar
● nuclei with spins > ½, oblong shape nucleus

● Scalar relaxation of the 1st kind
● Chemical exchange 

● Scalar relaxation of the 2nd kind
● scalar coupling to quadrupolar nucleus

● Spin-rotation
● changes in rotational angular momentum
● usually only in small molecules in gas phase 

Relaxation mechanisms



  

Dipole-dipole



  

Chemical shift 
anisotropy (CSA)



  

Quadrupolar relaxation 
Nuclei with spin >1/2



  

HN coherence
random

Chemical exchange

Scalar relaxation of the 1st kind



  

13C    D
J

CD

Rate ~1/J
CD

Quadrupolar 
relaxation

Scalar relaxation of the  2nd kind



  

Spin-rotation relaxation
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Random local fields 

Molecule 1 Molecule 2



  

Random local fields 



  

Rough rule of thumb for 
spherical proteins:

T
c
 ~ MW(kDa)*0.6



  Average t
c
= 0.613*MW
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tc=10-8 (~20kDa)
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Rate=Constants * ”mechanism” * correlation function

For pure Dipole-dipole:

Relaxation



  



  



  

More complex internal motion (e.g. 2 or more internal motions)

Be Cautious: If τ
f
 if close  to τ

s 
(within a order of magnitude or so),

then the values may not be distinguishable due to noise
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H-H Dipole-DipoleDipole-Dipole

>~2.5AD
NH

~1A

Non-bonded H contribution to N DD 
relaxation ~250 times smaller than 
direct bonded NH



  

Coherence 
order
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HN relaxation depends on 5 frequencies



  

Peng, J. W., & Wagner, G. (1994). Nuclear Magnetic Resonance, Part C. Meth. Enzymol., 
239(1987), 563–596. https://doi.org/10.1016/S0076-6879(94)39022-3



  



  

Chemical shift anisotropy

dipole-dipole
6 unknowns



  

R1,R2,HetNOE
Used for model free



  



  



  



  

More serious<5% R
S
(S

z
)

R
N
(N

z
)



  

● Need to keep I
z
 and 2I

Z
S

Z
 terms constant or zero.

● Initial saturation via 2 long pulses (double components of S
z 
remain equal and cross-

correlation removed)
● Saturation maintained by pulse train of hard 90 pulses

● could be achieved with proton broadband decoupling
● Saturation forces peak intensity to that of hetNOE 

R
N
(N

z
)



  

Alternative approach using 1H decoupling

Q and q are invertedWALTZ→ 90
x
-180

-x
-270

x



  

R
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● Continuous wave spin lock along x axis effectively kills the J
IS 

term
● CPMG could be used

● Cross-correlation due to CSA-DD is suppressed by inserting 180 proton pulses in spin lock
● Off resonance effects will effect the relaxation rate since the spin lock axis is tilted toward the Z 

axis as a function of off resonance 

R
N
(N

x,y
)



  

trajectory



Dipole-Dipole/CSA relaxation interference

In relaxation, the 
interactions are 
squared averages.

 
21 2 22R A B A AB B     

For 2 relaxation 
interactions, A & B 
that have the same 
symmetry, the square 
contains cross terms.

Relaxation interference



180 I
x

S relaxation due to cross-correlation

Averages relaxation
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● I
sat 

with T = several seconds
● T

eq 
with T=0

● Solvent saturation can complicate this measurement- especially if relaxation delay too short
● Amides remain partially saturated and underestimate the the equilibrium S

z
● Relaxation delays rely on S spin polarization – longer relaxation delay required 
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● Rates significantly faster than single operators (S
z
, S

x
) due to H relaxation

● Proton-proton cross relaxation couples the relaxation to with spins external to IS
● Essentially driven by J

IAi
(0) 

● CSA-DD cross correlation causes cross-relaxation to the in-phase components (I
z
S

z
->S

x
)

● Generally these rates are significantly smaller than the antiphase rates
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● Proton I
z 
has a significant effect on the auto- and cross-relaxation rates of the anti-phase states

● Contains IS D-D interaction and many proton-proton D-D interactions
● Heteronuclear D-D relaxation is smaller than homonuclear D-D
● Reduce proton-proton DD cross relaxation

● only S bound H inverted during relaxation (all non-bound H flipped to +z)
● S bound H are inverted after S frequency labeling
● Measure buildup in linear region (short times)

R
H
(H

z
N)



  

Measurement of multiple quantum is an average of double and zero quantum relaxation 
Proton-proton DD strong J(0) causes rapid decay
In general, difficult to measure
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